Skip to main content

Advertisement

Log in

Identification and characterization of multiple abiotic stress tolerance genes in wheat

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Wheat is produced worldwide over six continents with the European Union, China, India, Russia, and the United States as major producer countries. The productivity was recorded 749 million tons by harvesting from 220-million-hectare land. It is the need of the hour to develop stress-tolerant wheat varieties to enhance the productivity by 60% to provide food security to 9.6 billion-world population by 2050. Although the genotypes have been identified for heat, drought and salt tolerance, their underlying mechanism for tolerance is poorly understood. The detailed understanding of the mechanism and identification of critical factors participating in multiple abiotic stress tolerance is essential. In the present study, the contrasting wheat genotypes were intensely characterized and assessed for the expression of different stress responsive genes under lab conditions. The expression analysis revealed that SHN1, DREB6, NHX2 and AVP1 were found to be highly induced under heat, salt and drought stresses in wheat. Thus, these genes can be used as signature genes to identify the multiple stress-tolerant varieties in the breeding program. The novel variants of these genes can be targeted through breeding or genetic engineering or genome editing strategies to develop multiple abiotic stress tolerant wheat varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Infographic IWGSC: Wheat - A Key Crop for Food Security (2018) http://www.wheatgenome.org/News/Media-resources/Fact-Sheets-Infographics/Wheat-A-Key-Crop-for-Food-Security. Accessed 9 April 2019

  2. Abhinandan K, Skori L, Stanic M, Hickerson NMN, Jamshed M, Samuel MA (2018) Abiotic stress signaling in wheat- an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Front Plant Sci 9:734

    Article  PubMed  PubMed Central  Google Scholar 

  3. Baloglu MC, Inal B, Kavas M, Unver T (2014) Diverse expression pattern of wheat transcription factors against abiotic stresses in wheat species. Gene 550:117–122

    Article  CAS  PubMed  Google Scholar 

  4. Kulkarni M, Soolanayakanahally R, Ogawa S, Uga Y, Selvaraj MG, Kagale S (2017) Drought response in wheat: key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front Chem 5:106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Amtmann A, Sanders D (1999) Mechanisms of Na + uptake by plant cells. Adv Bot Res 29:75–112

    Article  CAS  Google Scholar 

  6. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6, 441–445. https://doi.org/10.1016/s1369-5266(03)00085-2

    Article  CAS  PubMed  Google Scholar 

  7. Bassil E, Blumwald E (2014) The ins and outs of intracellular ion homeostasis: NHX-type cation/H + transporters. Curr Opin Plant Biol 22, 1–6. https://doi.org/10.1016/j.pbi.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  8. Kumar S, Beena AS, Awana M, Singh A (2017) Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant Sci 8:1151

    Article  PubMed  PubMed Central  Google Scholar 

  9. Qiu Z, Yuan M, He Y, Li Y, Zhang L (2017) Physiological and transcriptome analysis of He-Ne laser pretreated wheat seedlings in response to drought stress. Sci Rep 7, 6108. https://doi.org/10.1038/s41598-017-06518-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dudziak K, Zapalska M, Börner A, Szczerba H, Kowalczyk K, Nowak M (2019) Analysis of wheat gene expression related to the oxidative stress response and signal transduction under short-term osmotic stress. Sci Rep 9:2743

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rampino P, Pataleo S, Gerardi C, Mita G, Perrotta C (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29(12):2143–2152

    Article  CAS  PubMed  Google Scholar 

  12. Xu ZS, Ni ZY, Liu L, Nie LN, Li LC, Chen M (2008) Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high-salt, and cold stress in wheat. Mol Genet Genom 280:497–508. https://doi.org/10.1007/s00438-008-0382-x

    Article  CAS  Google Scholar 

  13. Zhang L, Zhang L, Xia C, Zhao G, Jia J, Kong X (2016) The novel wheat transcription factor TaNAC47 Enhances multiple abiotic stress tolerances in transgenic plants. Front Plant Sci 6:1174

    PubMed  PubMed Central  Google Scholar 

  14. Mamrutha HM, Rinki, Kumar R, Kaur A, Yadav VK (2015) Standardization of temperature induction response technique in wheat. Wheat Barley News Lett 9(1&2):11

    Google Scholar 

  15. Rinki, Mamrutha HM, Kumar R, Tivari V (2016) Comparison of seedling nd adult stage heat stress tolerance in wheat. Wheat Barley News Lett 10(1):9

    Google Scholar 

  16. Rane J, Pannu RK, Sohu VS, Saini RS, Mishra B, Shoran-Crossa J, Vargas M, Joshi AK (2007) Performance of yield and stability of advanced wheat genotypes under heat stress environments of the Indo-Gangetic plains. Crop Sci 47:1561–1573

    Article  Google Scholar 

  17. Zhang K, Jin C, Wu L, Hou M, Dou S, Pan Y (2014) Expression analysis of a stress-related phosphoinositide-specific phospholipase C gene in wheat (Triticum aestivum L.). PloS ONE 9(8):e105061. https://doi.org/10.1371/journal.pone.0105061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kaur A, Gupta OP, Meena NL, Grewal A, Sharma P (2017) Comparative temporal expression analysis of micrornas and their target genes in contrasting wheat genotypes during osmotic stress. Appl Biochem Biotechnol 181(2):613–626

    Article  CAS  PubMed  Google Scholar 

  19. Rana V, Ram S, Nehra K, Sharma I (2015) Differential expression analysis of salt stress related genes TaSRG and TaRUB1 in contrasting wheat genotypes. J Wheat Res 7(1):71–73

    Google Scholar 

  20. Gupta OP, Pandey GC, Gupta RK, Sharma I, Tiwari R (2013) Comparative behavior of terminal heat tolerant (WH 730) and intolerant (Raj 4014) hexaploid wheat genotypes at germination and growth at early stage under varying temperature regimes. Afr J Microbiol Res 7(30):3953–3960

    Google Scholar 

  21. Padaria JC, Vishwakarma H, Biswas K, Jasrotia RS, Singh GP (2014) Molecular cloning and in-silico characterization of high temperature stress responsive pAPX gene isolated from heat tolerant Indian wheat cv. Raj 3765. BMC Res Notes 7:713

    Article  PubMed  PubMed Central  Google Scholar 

  22. Iquebal MA, Sharma P, Jasrotia RS, Jaiswal S, Kaur A, Saroha M, Angadi UB, Sheoran S, Singh R, Singh GP, Rai A, Tiwari R, Kumar D (2019) RNAseq analysis reveals drought responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Sci Rep 9(1):3917. doi:https://doi.org/10.1038/s41598-019-49915-2

    Article  CAS  Google Scholar 

  23. Kumar R, Mamrutha HM, Kaur A, Venkatesh K, Grewal A, Kumar R, Tiwari V (2017) Development of an efficient and reproducible regeneration system in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 23(4):945–954

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kumar R, Kaur A, Mamrutha HM, Grewal A (2017) Synergistic effect of cefotaxime and timentin to suppress the Agrobacterium overgrowth in wheat (Triticum aestivum L) transformation. Asian J Microbiol Biotechnol Environ Sci 19(4):184–190

    Google Scholar 

  25. Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q (2015) Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol. https://doi.org/10.1186/s12870-015-0511-8

    Article  PubMed  PubMed Central  Google Scholar 

  26. Goyal E, Singh KA, Singh RS, Mahato AK, Chand S, Kanika K (2016) Transcriptome profling of the saltstress response in Triticum aestivum cv. Kharchia Local Sci Rep 6:27752

    Article  CAS  PubMed  Google Scholar 

  27. Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15:413–428

    Article  Google Scholar 

  28. Maia JM, Voigt EL, Macêdo CEC, Ferreira-Silva SL, Silveira JAG (2010) Salt-induced changes in antioxidative enzyme activities in root tissues do not account for the differential salt tolerance of two cowpea cultivars. Braz J Plant Physiol 22(2):113–122

    Article  Google Scholar 

  29. Kumar R, Mamrutha HM, Kaur A, Venkatesh K, Sharma D, Singh GP (2019) Optimization of Agrobacterium-mediated transformation in spring bread wheat using mature and immature embryos. Mol Biol Rep 46(2):1845–1853

    Article  CAS  PubMed  Google Scholar 

  30. Silva P, Gerós H (2009) Regulation by salt of vacuolar H+-ATPase and H+-pyrophosphatase activities and Na+/H + exchange. Plant Signal Behav 4(8):718–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu JN, Huang J, Wang ZN, Zhang JS, Chen SY (2007) An Na+/H + antiporter gene from wheat plays an important role in stress tolerance. J Biosci 32:1153–1161

    Article  CAS  PubMed  Google Scholar 

  32. Lekshmy S, Sairam RK, Chinnusamy V (2012) Role of SOS pathway in salinity tolerance in wheat. https://www.ncbi.nlm.nih.gov/nuccore/JQ180504

  33. Mamrutha HM, Kumar R, Kaur A, Kumar M (2017) Expressed sequence tags of PAL gene from Triticum aestivum L. cv. DPW 621–650. https://www.ncbi.nlm.nih.gov/nuccore/JZ970255

  34. Bi H, Luang S, Li Y, Bazanova N, Morran S, Song Z, Perera MA, Hrmova M, Borisjuk N, Lopato S (2016) Identification and characterization of wheat drought-responsive MYB transcription factors involved in the regulation of cuticle biosynthesis. J Exp Bot 67(18):5363–5380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ma YZ, Xu ZS, Cheng XG, Li LC, Chen M, Zhang RY, Qiu ZG (2005) Isolation and functional identification of dehydration responsive element binding protein TaDREB6 from Triticum aestivum. https://www.ncbi.nlm.nih.gov/nuccore/AY781361

  36. Wang X, Zeng J, Li Y, Rong X, Sun J, Sun T, Li M, Wang L, Feng Y, Chai R, Chen M, Chang J, Li K, Yang G, He G (2015) Expression of TaWRKY44, a wheat WRKY gene, in transgenic tobacco confers multiple abiotic stress tolerances. Front Plant Sci 6:615

    PubMed  PubMed Central  Google Scholar 

  37. Lekshmy S, Sairam RK, Chinnusamy V (2012) Effect of salinity stress on gene expression in wheat. https://www.ncbi.nlm.nih.gov/nuccore/JQ230566

  38. Yu Y, Zhang G (2015) Molecular cloning and characterization of glutathione peroxidase gene in chemically induced male sterility in wheat (Triticum aestivum L.). https://www.ncbi.nlm.nih.gov/nuccore/KM817777

  39. Lekshmy S, Sairam RK, Chinnusamy V (2012) Effect of salinity stress on gene expression in wheat. https://www.ncbi.nlm.nih.gov/nuccore/383793897/

  40. Lekshmy S, Sairam RK, Chinnusamy V (2012) Effect of salinity stress on gene expression in wheat. https://www.ncbi.nlm.nih.gov/nuccore/JQ230562

  41. Lekshmy S, Sairam RK, Chinnusamy V (2012) Effect of salinity stress on gene expression in wheat. https://www.ncbi.nlm.nih.gov/nuccore/JQ269674

  42. Li J, Wang RF, Zheng WY, Wang XL, Li PF, Yang LX, Xu K, Ji H (2012) Cloning and sequence analysis of stress tolerance relative gene FeSOD in wheat (Triticum aestivum). https://www.ncbi.nlm.nih.gov/nuccore/JX398977

  43. Himi E, Noda K (2016) Isolation of wheat actin gene. https://www.ncbi.nlm.nih.gov/nuccore/AB181991

  44. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)). Methods 25:402–408

    CAS  PubMed  Google Scholar 

  45. Tripathi AK, Pareek A, Singla-Pareek SL (2016) A NAP-family histone chaperone functions in abiotic stress response and adaptation. Plant Physiol 171:2854–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rahaie M, Xue GP, Schenk PM (2013) The role of transcription factors in wheat under different abiotic stresses. In: Vahdati K (ed) Abiotic stress—plant responses and applications in agriculture. InTech, pp 367–385. https://doi.org/10.5772/54795

  47. Aharoni A, Dixit S, Jetter R, Thoenes E, Arkel GV, Pereira A (2004) The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Plant Cell 16:2463–2480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sajeevan RS, Nataraja KN, Shivashankara KS, Pallavi N, Gurumurthy DS, Shivanna MB (2017) Expression of Arabidopsis SHN1 in Indian mulberry (Morus indica L.) increases leaf surface wax content and reduces post-harvest water loss. Front Plant Sci 8:418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Taketa S, Amano S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. PNAS USA 105:4062–4067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang Y, Wan L, Zhang L, Zhang Z, Zhang H, Quan R, Zhou S, Huang R (2012) An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Mol Biol 78:275–288

    Article  CAS  PubMed  Google Scholar 

  51. Jordan W, Shouse PJ, Blum A, Miller FR, Monk RL (1984) Environmental physiology of sorghum. II. Epicuticular wax load and cuticular transpiration. Crop Sci 24:1168–1173

    Article  Google Scholar 

  52. Li FY, Xu Z, Li YX, Yan YM, Li LC, Chen M, Ma YZ (2011) Cloning and activity analysis of TaDREB6 promoter in wheat. J Triticeae Crops 31(5):793–798

    CAS  Google Scholar 

  53. Bhaskaran S, Savithramma DL (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H + antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot. https://doi.org/10.1093/jxb/err237

    Article  PubMed  Google Scholar 

  54. Brett CL, Tukaye DN, Mukherjee S, Rao RJ (2005) The yeast endosomal Na+ (K+)/H + exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol Biol Cell 16:1396–1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang Y, Guan C, Liu Y, Chen B, Yuan S, Cui X, Zhang Y, Yang F (2017) Enhanced growth performance and salinity tolerance in transgenic switch grass via over expressing vacuolar Na+ (K+)/H + antiporter gene (PvNHX1). Front Plant Sci 3(8):458. https://doi.org/10.3389/fpls.2017.00458

    Article  Google Scholar 

  56. Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Ann Rev Plant Physiol Plant Mol Biol 40:347–369

    Article  CAS  Google Scholar 

  57. Verberne MC, Muljono RAB, Verpoorte R (1999) Salicylic acid biosynthesis. In: Hooykaas PJJ, Hall MA, Libbenga KR (eds) Biochemistry and molecular biology of plant hormones, vol 33. Elsevier, pp. 295–312

  58. Simaei M, Khavarinejad A, Saadatmand S, Bernard F, Fahimi H (2011) Interactive effects of salycylic acid and nitric oxide on soybean plants under NaCl salinity. Russ J Plant Physiol 58:783–790

    Article  CAS  Google Scholar 

  59. Khalid H, Kumari M, Grover A, Nasim M (2015) Salinity stress tolerance of camelina investigated in vitro. Sci Agric Bohemica 46(4):137–144

    Google Scholar 

  60. Kumar R, Kaur A, Pandey A, Mamrutha HM, Singh GP (2019) CRISPR-based genome editing in wheat: a comprehensive review and future prospects. Mol Biol Rep 46:3557–3569

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is financially supported by the Indian Council of Agricultural Research, New Delhi, India, under the project entitled “ICAR Network Project on Functional Genomics and Genetic Modification in Crops (NPFGGM)” (Project No. 1006474).

Author information

Authors and Affiliations

Authors

Contributions

MHM conceived and designed the research with RK. RK and AK conducted experiments. RK, AK, NB and AP collected experimental data. SK and CNM contributed analytical tools. RK and AK wrote the manuscript. MHM, GS and GPS edited the manuscript. All authors read and approved the manuscript for publication.

Corresponding author

Correspondence to Mamrutha Harohalli Masthigowda.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Masthigowda, M.H., Kaur, A. et al. Identification and characterization of multiple abiotic stress tolerance genes in wheat. Mol Biol Rep 47, 8629–8643 (2020). https://doi.org/10.1007/s11033-020-05906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05906-5

Keywords

Navigation