Skip to main content
Log in

Honey protects against chronic unpredictable mild stress induced- intestinal barrier disintegration and hepatic inflammation

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 24 March 2021

This article has been updated

Abstract

Chronic stress is linked to liver injury by increasing intestinal permeability to lipopolysaccharide (LPS), which in turn can result in systemic and liver inflammation and damage. Beneficial effect of honey in the prevention of liver injury has been shown in previous studies, but mechanisms underlying are still less known. Here, we examined the therapeutic impacts of honey on intestinal nuclear factor-κB (NF-κB; an important regulator of stress-induced immune and inflammatory responses) and ileal tight junction (TJ) proteins of claudin-1 and ZO-1, serum LPS, liver inflammation and oxidative markers of malondialdehyde (MDA), nitric oxide (NO), (erythroid-derived 2)-like 2 (Nrf2), tumor necrosis factor (TNF)-α and total antioxidant capacity (TAC) following chronic unpredictable mild stress (CUMS) using Western blotting, ELISA kit and spectrophotometry. Male rats were subjected to CUMS for 28 consecutive days. Honey (0.2 and 2 g/kg/day, by gavage) was administered pretreatment (10 days) and during stress. Honey reduced stress-induced LPS elevation by preventing reduction in the intestinal TJ proteins of claudin-1 and ZO-1, while did not affect NF-kB levels. In liver, honey significantly suppressed stress-induced increase in MDA, NO, TNF-α and Nrf2 expression and normalized TAC. Noteworthy, honey high-dose provoked a greater decrease in TNF-α, Nrf2 and LPS levels than honey low-dose. Together, our study indicated that honey protects against stress-induced liver damage by modulating at least two pathways; intestinal barrier protection via increased TJ protein complex expression, and hepatic TAC protection that may be involved in the inhibition of MDA, NO, TNF-α and Nrf2 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Joung JY, Cho JH, Kim YH, et al (2019) A literature review for the mechanisms of stress-induced liver injury. Brain Behav. 9

  2. Roehlen N, Suarez AAR, El Saghire H et al (2020) Tight junction proteins and the biology of hepatobiliary disease. Int. J. Mol, Sci, p 21

    Google Scholar 

  3. Meddings JB, Swain MG (2000) Environmental stress-induced gastrointestinal permeability is mediated by endogenous glucocorticoids in the rat. Gastroenterology 119:1019–1028. https://doi.org/10.1053/gast.2000.18152

    Article  CAS  PubMed  Google Scholar 

  4. Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M et al (2015) Role of corticotropin-releasing factor in gastrointestinal permeability. J Neurogastroenterol Motil 21:33–50

    Article  Google Scholar 

  5. Bhattarai Y (2018) Microbiota-gut-brain axis: interaction of gut microbes and their metabolites with host epithelial barriers. Neurogastroenterol Motil. https://doi.org/10.1111/nmo.13366

    Article  PubMed  Google Scholar 

  6. Fukui H (2015) Gut-liver axis in liver cirrhosis: How to manage leaky gut and endotoxemia. World J Hepatol 7:425–442. https://doi.org/10.4254/wjh.v7.i3.425

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zheng G, Victor Fon G, Meixner W et al (2017) Chronic stress and intestinal barrier dysfunction: glucocorticoid receptor and transcription repressor HES1 regulate tight junction protein Claudin-1 promoter. Sci Rep. https://doi.org/10.1038/s41598-017-04755-w

    Article  PubMed  PubMed Central  Google Scholar 

  8. Demaude J, Salvador-Cartier C, Fioramonti J et al (2006) Phenotypic changes in colonocytes following acute stress or activation of mast cells in mice: implications for delayed epithelial barrier dysfunction. Gut 55:655–661. https://doi.org/10.1136/gut.2005.078675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nicoletti A, Ponziani FR, Biolato M et al (2019) Intestinal permeability in the pathogenesis of liver damage: from non-alcoholic fatty liver disease to liver transplantation. World J Gastroenterol 25:4814–4834

    Article  CAS  Google Scholar 

  10. Nguyen-Lefebvre AT, Horuzsko A (2015) Kupffer Cell Metabolism and Function. J Enzymol Metab 1:

  11. Adachi Y, Moore LE, Bradford BU et al (1995) Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 108:218–224. https://doi.org/10.1016/0016-5085(95)90027-6

    Article  CAS  PubMed  Google Scholar 

  12. Choi Y, Abdelmegeed MA, Song BJ (2018) Preventive effects of indole-3-carbinol against alcohol-induced liver injury in mice via antioxidant, anti-inflammatory, and anti-apoptotic mechanisms: Role of gut-liver-adipose tissue axis. J Nutr Biochem 55:12–25. https://doi.org/10.1016/j.jnutbio.2017.11.011

    Article  CAS  PubMed  Google Scholar 

  13. Rubio-Ruiz ME, Guarner-Lans V, Cano-Martínez A et al (2019) Resveratrol and quercetin administration improves antioxidant DEFENSES and reduces fatty liver in metabolic syndrome rats. Molecules. https://doi.org/10.3390/molecules24071297

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lambert JC, Zhou Z, Wang L et al (2003) Prevention of alterations in intestinal permeability is involved in zinc inhibition of acute ethanol-induced liver damage in mice. J Pharmacol Exp Ther 305:880–886. https://doi.org/10.1124/jpet.102.047852

    Article  CAS  PubMed  Google Scholar 

  15. Dahiru D, Obidoa O (2008) Evaluation of the antioxidant effects of Ziziphus mauritiana lam. leaf extracts against chronic ethanol-induced hepatotoxicity in rat liver. African J Tradit Complement Altern Med 5:39. https://doi.org/10.4314/ajtcam.v5i1.31254

    Article  CAS  Google Scholar 

  16. Bourogaa E, Nciri R, Mezghani-Jarraya R, -Sultan CR, Damak M, El Feki A et al (2012) Antioxidant activity and hepatoprotective potential of Hammada scoparia against ethanol-induced liver injury in rats. J Physiol Biochem 69:227–237. https://doi.org/10.1007/S13105-012-0206-7

    Article  PubMed  Google Scholar 

  17. Samarghandian S, Farkhondeh T, Samini F (2017) Honey and health: A review of recent clinical research. Pharmacognosy Res. 9:121–127

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Martinotti S, Ranzato E (2018) Honey, wound repair and regenerative medicine. J. Funct, Biomater, p 9

    Google Scholar 

  19. Martinotti SRE (2014) Cellular and Molecular Mechanisms of Honey Wound Healing. Nova Publishers Inc, Hauppauge, NY, USA

    Google Scholar 

  20. Malkoç M, Yaman SÖ, Imamoğlu Y et al (2020) Anti-inflammatory, antioxidant and wound-healing effects of mad honey in streptozotocin-induced diabetic rats. J Apic Res 59:426–436. https://doi.org/10.1080/00218839.2019.1689036

    Article  Google Scholar 

  21. Oryan A, Alemzadeh E, Moshiri A (2016) Biological properties and therapeutic activities of honey in wound healing: a narrative review and meta-analysis. J Tissue Viability 25:98–118. https://doi.org/10.1016/j.jtv.2015.12.002

    Article  PubMed  Google Scholar 

  22. Cianciosi D, Forbes-Hernández TY, Afrin S, et al (2018) Phenolic compounds in honey and their associated health benefits: a review. Molecules 23

  23. Talebi M, Talebi M, Farkhondeh T, Samarghandian S (2020) Molecular mechanism-based therapeutic properties of hmechanism-based therapeutic properties of honey. Biomed Pharmacother 130:110590

    Article  CAS  Google Scholar 

  24. Moloudian H, Abbasian S, Nassiri-Koopaei N, et al (2018) Characterization and classification of Iranian honey based on physicochemical properties and antioxidant activities, with chemometrics approach. Iran J Pharm Res 17:708–725. https://doi.org/https://doi.org/10.22037/ijpr.2018.2226

  25. Devasvaran K, Tan JJ, Ng CT et al (2019) Malaysian tualang honey inhibits hydrogen peroxide-induced endothelial hyperpermeability. Oxid Med Cell Longev 2019:1202676. https://doi.org/10.1155/2019/1202676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ali AM, Kunugi H (2019) Bee honey protects astrocytes against oxidative stress: a preliminary in vitro investigation. Neuropsychopharmac Rep 39:312–314. https://doi.org/10.1002/npr2.12079

    Article  CAS  Google Scholar 

  27. Majtan J, Kumar P, Majtan T et al (2009) Effect of honey and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes. Exp Dermatol 19:e73–e79. https://doi.org/10.1111/j.1600-0625.2009.00994.x

    Article  Google Scholar 

  28. Wei L, Li Y, Tang W et al (2019) Chronic unpredictable mild stress in rats induces colonic inflammation. Front Physiol. https://doi.org/10.3389/fphys.2019.01228

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu D, Wang Z, Gao Z et al (2014) Effects of curcumin on learning and memory deficits, BDNF, and ERK protein expression in rats exposed to chronic unpredictable stress. Behav Brain Res 271:116–121. https://doi.org/10.1016/j.bbr.2014.05.068

    Article  CAS  PubMed  Google Scholar 

  30. Turner JR (2009) Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809

    Article  CAS  Google Scholar 

  31. Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–20

    Article  CAS  Google Scholar 

  32. Salim SY, Söderholm JD (2011) Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 17:362–381

    Article  Google Scholar 

  33. Zong Y, Zhu S, Zhang S et al (2019) Chronic stress and intestinal permeability: lubiprostone regulates glucocorticoid receptor-mediated changes in colon epithelial tight junction proteins, barrier function, and visceral pain in the rodent and human. Neurogastroenterol Motil 31:e13477. https://doi.org/10.1111/nmo.13477

    Article  CAS  PubMed  Google Scholar 

  34. Oguz S, Salt O, Ibis AC et al (2018) Combined effectiveness of honey and immunonutrition on bacterial translocation secondary to obstructive jaundice in rats: experimental study. Med Sci Monit 24: 3374–3381. https://doi.org/https://doi.org/10.12659/MSM.907977

  35. Gencay C, Kilicoglu SS, Kismet K et al (2008) Effect of honey on bacterial translocation and intestinal morphology in obstructive jaundice. World J Gastroenterol 14:3410–3415. https://doi.org/10.3748/wjg.14.3410

    Article  PubMed  PubMed Central  Google Scholar 

  36. Maruhashi R, Eguchi H, Akizuki R et al (2019) Chrysin enhances anticancer drug-induced toxicity mediated by the reduction of claudin-1 and 11 expression in a spheroid culture model of lung squamous cell carcinoma cells. Sci Rep 9:1–14. https://doi.org/10.1038/s41598-019-50276-z

    Article  CAS  Google Scholar 

  37. Ranneh Y, Akim AM, Hamid HA et al (2019) Stingless bee honey protects against lipopolysaccharide induced-chronic subclinical systemic inflammation and oxidative stress by modulating Nrf2, NF-κB and p38 MAPK. Nutr Metab 161(16):1–17. https://doi.org/10.1186/S12986-019-0341-Z

    Article  Google Scholar 

  38. Aladaileh SH, Abukhalil MH, Saghir SAM et al (2019) Galangin activates Nrf2 signaling and attenuates oxidative damage, inflammation, and apoptosis in a rat model of cyclophosphamide-induced hepatotoxicity. Biomolecules. https://doi.org/10.3390/biom9080346

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yaman T, Yener Z, Celik I (2016) Histopathological and biochemical investigations of protective role of honey in rats with experimental aflatoxicosis. BMC Complement Altern Med. https://doi.org/10.1186/s12906-016-1217-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kassim M, Mansor M, Al-Abd N, Yusoff KM (2012) Gelam honey has a protective effect against lipopolysaccharide (LPS)-induced organ failure. Int J Mol Sci 13:6370–6381. https://doi.org/10.3390/ijms13056370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang Z, Dou X, Li S et al (2014) Nuclear factor (erythroid-derived 2)-like 2 activation-induced hepatic very-low-density lipoprotein receptor overexpression in response to oxidative stress contributes to alcoholic liver disease in mice. Hepatology 59:1381–1392. https://doi.org/10.1002/hep.26912

    Article  CAS  PubMed  Google Scholar 

  42. Xie YL, Chu JG, Jian XM et al (2017) Curcumin attenuates lipopolysaccharide/D-galactosamine-induced acute liver injury by activating Nrf2 nuclear translocation and inhibiting NF-kB activation. Biomed Pharmacother 91:70–77. https://doi.org/10.1016/j.biopha.2017.04.070

    Article  CAS  PubMed  Google Scholar 

  43. Tian Y, Li Z, Shen B et al (2017) Protective effects of morin on lipopolysaccharide/D-galactosamine-induced acute liver injury by inhibiting TLR4/NF-κB and activating Nrf2/HO-1 signaling pathways. Int Immunopharmacol 45:148–155. https://doi.org/10.1016/j.intimp.2017.02.010

    Article  CAS  PubMed  Google Scholar 

  44. Peng X, Dai C, Liu Q et al (2018) Curcumin attenuates on carbon tetrachloride-induced acute liver injury in mice via modulation of the Nrf2/HO-1 and TGF-β1/Smad3 pathway. Molecules. https://doi.org/10.3390/molecules23010215

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xu D, Xu M, Jeong S et al (2019) The role of Nrf2 in liver disease: novel molecular mechanisms and therapeutic approaches. Front Pharmacol. https://doi.org/10.3389/fphar.2018.01428

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wullaert A, Bonnet MC, Pasparakis M (2011) NF-κB in the regulation of epithelial homeostasis and inflammation. Cell Res 21:146–158

    Article  CAS  Google Scholar 

  47. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2

  48. Ranneh Y, Ali F, Akim AM et al (2017) Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Appl Biol Chem 60:327–338

    Article  CAS  Google Scholar 

  49. Raynaud A, Ghezali L, Gloaguen V et al (2013) Honey-induced macrophage stimulation: AP-1 and NF-κB activation and cytokine production are unrelated to LPS content of honey. Int Immunopharmacol 17:874–879. https://doi.org/10.1016/j.intimp.2013.09.014

    Article  CAS  PubMed  Google Scholar 

  50. Payne CM, Weber C, Crowley-Skillicorn C et al (2007) Deoxycholate induces mitochondrial oxidative stress and activates NF-κB through multiple mechanisms in HCT-116 colon epithelial cells. Carcinogenesis 28:215–222. https://doi.org/10.1093/carcin/bgl139

    Article  CAS  PubMed  Google Scholar 

  51. Cho YE, Kim DK, Seo W et al (2019) Fructose promotes leaky gut, endotoxemia, and liver fibrosis through ethanol-inducible cytochrome P450–2E1–mediated oxidative and nitrative stress. Hepatology. https://doi.org/10.1002/hep.30652

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Isfahan University of Medical Sciences (Grant number 198158 to M.G.). This work did involve animals (rats). The experimental procedures were approved by the Ethics Committee of the Isfahan University of Medical Sciences in accordance with ethical guidelines for the Care and Use of Laboratory Animals (IR.MUI.RESEARCH.REC.1398.533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maedeh Ghasemi.

Ethics declarations

Conflict of interest

The authors declare that no conflict interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The correct spelling of the 3rd author’s name is Asiye Rafiee Sardooi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehranfard, N., Yazdi, A., Sardooi, A.R. et al. Honey protects against chronic unpredictable mild stress induced- intestinal barrier disintegration and hepatic inflammation. Mol Biol Rep 47, 8475–8484 (2020). https://doi.org/10.1007/s11033-020-05888-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05888-4

Keywords

Navigation