Skip to main content

Advertisement

Log in

Transcription factor Ets-2 regulates the expression of key lymphotropic factors

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Transcription factor Ets-2 downregulates the expression of cytokine genes and HIV-1 in resting T-cells. Herein, we studied whether Ets-2 regulates the expression of lymphotropic factors (LFs) NFAT2, NF-κΒ/p65, c-Jun, c-Fos, which regulate the activation/differentiation of T-cells, and kinase CDK10, which controls Ets-2 degradation and repression activity. In silico analysis revealed Ets-2 binding sites on the promoters of NFAT2, c-Jun, c-Fos. The T-cell lines Jurkat (models T-cell signaling/activation) and H938 (contains the HIV-1-LTR) were transfected with an Ets-2 overexpressing vector, in the presence/absence of mitogens. mRNA and protein levels were assessed by qPCR and Western immunoblotting, respectively. Ets-2 overexpression in unstimulated Jurkat increased NFAT2 and c-Jun mRNA/protein, c-Fos mRNA and NF-κΒ/p65 protein, and decreased CDK10 protein. In unstimulated H938, Ets-2 upregulated NFAT2, c-Jun and CDK10 mRNA/protein and NF-κΒ/p65 protein. In stimulated Jurkat, Ets-2 increased NFAT2, c-Jun and c-Fos mRNA/protein and decreased CDK10 mRNA/protein. In stimulated H938 Ets-2 increased NFAT2, c-Jun and c-Fos protein and reduced CDK10 protein levels. Furthermore, Ets-2 overexpression modulated the expression of pro- and anti-apoptotic genes in both cell lines. Ets-2 upregulates the expression of key LFs involved in the activation of cytokine genes or HIV-1 in T-cells, either through its physical interaction with gene promoters or through its involvement in signaling pathways that directly impact their expression. The effect of Ets-2 on CDK10 expression in H938 vs Jurkat cells dictates that, additionally to Ets-2 degradation, CDK10 may facilitate Ets-2 repression activity in cells carrying the HIV-1-LTR, contributing thus to the regulation of HIV latency in virus-infected T-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Anderson MK, Hernandez-Hoyos G, Diamond RA, Rothenberg EV (1999) Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development 126:3131–3148

    CAS  PubMed  Google Scholar 

  2. Dwyer JM, Liu JP (2010) Ets2 transcription factor, telomerase activity and breast cancer. Clin Exp Pharmacol Physiol 37:83–87. https://doi.org/10.1111/j.1440-1681.2009.05236.x

    Article  CAS  PubMed  Google Scholar 

  3. Fry EA, Inoue K (2018) Aberrant expression of ETS1 and ETS2 proteins in cancer. Cancer Rep Rev 2:10. https://doi.org/10.15761/CRR.1000151

    Article  PubMed Central  Google Scholar 

  4. Wei GH, Badis G, Berger MF et al (2010) Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. Embo J 29:2147–2160. https://doi.org/10.1038/emboj.2010.106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hsu T, Trojanowska M, Watson DK (2004) Ets proteins in biological control and cancer. J Cell Biochem 91:896–903. https://doi.org/10.1002/jcb.20012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Selvaraj N, Kedage V, Hollenhorst PC (2015) Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal 13:015–0089. https://doi.org/10.1186/s12964-015-0089-7

    Article  CAS  Google Scholar 

  7. Zaldumbide A, Carlotti F, Pognonec P, Boulukos KE (2002) The role of the Ets2 transcription factor in the proliferation, maturation, and survival of mouse thymocytes. J Immunol 169:4873–4881. https://doi.org/10.4049/jimmunol.169.9.4873

    Article  PubMed  Google Scholar 

  8. Yamamoto H, Flannery ML, Kupriyanov S, Pearce J, McKercher SR, Henkel GW et al (1998) Defective trophoblast function in mice with a targeted mutation of Ets2. Genes Dev 12:1315–1326. https://doi.org/10.1101/gad.12.9.1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oikawa T (2004) ETS transcription factors: possible targets for cancer therapy. Cancer Sci 95:626–633. https://doi.org/10.1111/j.1349-7006.2004.tb03320.x

    Article  CAS  PubMed  Google Scholar 

  10. Mouzaki A, Rungger D (1994) Properties of transcription factors regulating interleukin-2 gene transcription through the NFAT binding site in untreated or drug-treated naive and memory T-helper cells. Blood 84:2612–2621. https://doi.org/10.1182/blood.V84.8.2612.2612

    Article  CAS  PubMed  Google Scholar 

  11. Marson A, Kretschmer K, Frampton GM et al (2007) Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445:931–935. https://doi.org/10.1038/nature05478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Argyropoulos C, Nikiforidis GC, Theodoropoulou M et al (2004) Mining microarray data to identify transcription factors expressed in naive resting but not activated T lymphocytes. Genes Immun 5:16–25. https://doi.org/10.1038/sj.gene.6364034

    Article  CAS  PubMed  Google Scholar 

  13. Bunting K, Wang J, Shannon MF (2006) Control of interleukin-2 gene transcription: a paradigm for inducible, tissue-specific gene expression. Vitam Horm 74:105–145. https://doi.org/10.1016/S0083-6729(06)74005-5

    Article  CAS  PubMed  Google Scholar 

  14. Panagoulias I, Georgakopoulos T, Aggeletopoulou I, Agelopoulos M, Thanos D, Mouzaki A (2016) Transcription factor Ets-2 acts as a preinduction repressor of interleukin-2 (IL-2) transcription in naive T helper lymphocytes. J Biol Chem 291:26707–26721. https://doi.org/10.1074/jbc.M116.762179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Toumpeki C, Anastasakis D, Panagoulias I et al (2018) Construction of an M1GS ribozyme for targeted and rapid mRNA cleavage; application on the Ets-2 oncogene. Med Chem 14:604–616. https://doi.org/10.2174/1573406414666180112115201

    Article  CAS  PubMed  Google Scholar 

  16. Panagoulias I, Karagiannis F, Aggeletopoulou I et al (2018) Ets-2 acts as a transcriptional repressor of the human immunodeficiency virus type 1 through binding to a repressor-activator target sequence of 5′-LTR. Front Immunol 8:1924. https://doi.org/10.3389/fimmu.2017.01924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Basuyaux JP, Ferreira E, Stéhelin D, Butticè G (1997) The Ets transcription factors interact with each other and with the c-Fos/c-Jun complex via distinct protein domains in a DNA-dependent and -independent manner. J Biol Chem 272:26188–26195. https://doi.org/10.1074/jbc.272.42.26188

    Article  CAS  PubMed  Google Scholar 

  18. Felber BK, Pavlakis GN (1988) A quantitative bioassay for HIV-1 based on trans-activation. Science 239:184–187. https://doi.org/10.1126/science.3422113

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz S, Felber BK, Fenyo EM, Pavlakis GN (1989) Rapidly and slowly replicating human immunodeficiency virus type 1 isolates can be distinguished according to target-cell tropism in T-cell and monocyte cell lines. Proc Natl Acad Sci USA 86:7200–7203. https://doi.org/10.1073/pnas.86.18.7200

    Article  CAS  PubMed  Google Scholar 

  20. Kreft L, Soete A, Hulpiau P, Botzki A, Saeys Y, De Bleser P (2017) ConTrav3: a tool to identify transcription factor binding sites across species, update 2017. Nucleic Acids Res 45:W490–W494. https://doi.org/10.1093/nar/gkx376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Macian F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5:472–484. https://doi.org/10.1038/nri1632

    Article  CAS  PubMed  Google Scholar 

  22. Gazon H, Barbeau B, Mesnard JM, Peloponese JM Jr (2018) Hijacking of the AP-1 signaling pathway during development of ATL. Front Microbiol 8:2686. https://doi.org/10.3389/fmicb.2017.02686

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu T, Zhang L, Joo D, Sun SC (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2:17023. https://doi.org/10.1038/sigtrans.2017.23

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu X, Berry CT, Ruthel G et al (2016) T cell receptor-induced nuclear factor κB (NF-κB) signaling and transcriptional activation are regulated by STIM1- and orai1-mediated calcium entry. J Biol Chem 291:8440–8452. https://doi.org/10.1074/jbc.M115.713008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guen VJ, Gamble C, Lees JA, Colas P (2017) The awakening of the CDK10/Cyclin M protein kinase. Oncotarget 8:50174–50186. https://doi.org/10.18632/oncotarget.15024

    Article  PubMed  PubMed Central  Google Scholar 

  26. Carrero ZI, Kollareddy M, Chauhan KM, Ramakrishnan G, Martinez LA (2016) Mutant p53 protects ETS2 from non-canonical COP1/DET1 dependent degradation. Oncotarget 7:12554–12567. https://doi.org/10.18632/oncotarget.7275

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kasten M, Giordano A (2001) Cdk10, a Cdc2-related kinase, associates with the Ets2 transcription factor and modulates its transactivation activity. Oncogene 20:1832–1838. https://doi.org/10.1038/sj.onc.1204295

    Article  CAS  PubMed  Google Scholar 

  28. Montano M (2014) Translational biology in medicine. Woodhead publishing series in biomedicine. Woodhead Publishing, Oxford, pp 9–33

    Google Scholar 

  29. Pessler F, Cron R (2004) Reciprocal regulation of the nuclear factor of activated T cells and HIV-1. Genes Immun 5:158–167. https://doi.org/10.1038/sj.gene.6364047

    Article  CAS  PubMed  Google Scholar 

  30. Argyropoulos C, Mouzaki A (2006) Immunosuppressive drugs in HIV disease. Curr Top Med Chem 6:1769–1789. https://doi.org/10.2174/156802606778194271

    Article  CAS  PubMed  Google Scholar 

  31. Milanovic M, Kracht M, Schmitz ML (2014) The cytokine-induced conformational switch of nuclear factor κB p65 is mediated by p65 phosphorylation. Biochem J 457:401–413. https://doi.org/10.1042/BJ20130780

    Article  CAS  PubMed  Google Scholar 

  32. Christian F, Smith EL, Carmody RJ (2016) The regulation of NF-κB subunits by phosphorylation. Cells 5:12. https://doi.org/10.3390/cells5010012

    Article  CAS  PubMed Central  Google Scholar 

  33. Hurd TW, Culbert AA, Webster KJ, Tavaré JM (2002) Dual role for mitogen-activated protein kinase (Erk) in insulin-dependent regulation of Fra-1 (fos-related antigen-1) transcription and phosphorylation. Biochem J 368(Pt 2):573–580. https://doi.org/10.1042/BJ20020579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rosenberger SF, Finch JS, Gupta A, Bowden GT (1999) Extracellular signal-regulated kinase 1/2-mediated phosphorylation of JunD and FosB is required for okadaic acid-induced activator protein 1 activation. J Biol Chem 274(2):1124–1130

    Article  CAS  Google Scholar 

  35. Adler J, Reuven N, Kahana C, Shaul Y (2010) c-Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD(P)H:quinone oxidoreductase 1 determines c-Fos serum response kinetics. Mol Cell Biol 30(15):3767–3778. https://doi.org/10.1128/MCB.00899-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Iorns E, Turner NC, Elliott R et al (2008) Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13:91–104. https://doi.org/10.1016/j.ccr.2008.01.001

    Article  CAS  PubMed  Google Scholar 

  37. Wolvetang EJ, Wilson TJ, Sanij E et al (2003) ETS2 overexpression in transgenic models and in Down syndrome predisposes to apoptosis via the p53 pathway. Hum Mol Genet 12:247–255. https://doi.org/10.1093/hmg/ddg015

    Article  CAS  PubMed  Google Scholar 

  38. van Montfort T, van der Sluis R, Darcis G et al (2019) Dendritic cells potently purge latent HIV-1 beyond TCR-stimulation, activating the PI3K-Akt-mTOR pathway. EBioMedicine 42:97–108. https://doi.org/10.1016/j.ebiom.2019.02.014

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Program “Human Resources Development, Education and Lifelong Learning” in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ) (to PD), the Operational Program «Human Resources Development, Education and Lifelong Learning» in the context of the project "Reinforcement of Postdoctoral Researchers—2nd Cycle" (MIS-5033021), implemented by the State Scholarships Foundation (ΙΚΥ) (to IA), and GILEAD-ASKLEPIOS grants for 2018 and 2019 (to AM).

Author information

Authors and Affiliations

Authors

Contributions

AM conceived and coordinated the study; PD, IA, IP performed the experiments, analyzed the data and prepared the figures; TG and IP advised on methodology; PD, IA, TG and AM wrote the manuscript.

Corresponding author

Correspondence to Athanasia Mouzaki.

Ethics declarations

Conflict of interest

None to declare.

Consent for publication

The manuscript has been read and approved by all named authors and there are no other persons who satisfied the criteria for authorship but are not listed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoulou, P., Aggeletopoulou, I., Panagoulias, I. et al. Transcription factor Ets-2 regulates the expression of key lymphotropic factors. Mol Biol Rep 47, 7871–7881 (2020). https://doi.org/10.1007/s11033-020-05865-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05865-x

Keywords

Navigation