Skip to main content

Advertisement

Log in

Vitamin D receptor (VDR) and metabolizing enzymes CYP27B1 and CYP24A1 in breast cancer

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Vitamin D Receptor (VDR), a nuclear steroid receptor, is a transcription factor with a primary physiologic role in calcium metabolism. It has also a physiologic role in breast tissues during development of the gland and postpartum. In addition, it is commonly expressed in breast cancer and has tumor suppressive effects. Cytochrome enzymes CYP27B1 and CYP24A1 that perform the final conversion of the circulating form of vitamin D, 25-hydroxyvitamin D (25-OHD) to the active VDR ligand, 1a,25-dihydroxyvitamin D and the catabolism of it to inactive 24,25-dihydroxyvitamin D, respectively, are also expressed in breast cancer tissues. Defective regulation of the receptor and the metabolic enzymes of VDR ligand is prevalent in breast cancer and leads to decreased VDR signaling. The expression and molecular defects of VDR, CYP27B1 and CYP24A1 that perturb physiologic function, the implications for breast cancer progression and therapeutic opportunities are discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandera Merchan B, Morcillo S, Martin-Nuñez G et al (2017) The role of vitamin D and VDR in carcinogenesis: through epidemiology and basic sciences. J Steroid Biochem Mol Biol 167:203–218

    CAS  PubMed  Google Scholar 

  2. Welsh J (2017) Function of the vitamin D endocrine system in mammary gland and breast cancer. Mol Cell Endocrinol 453:88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang X, Harbeck N, Jenschke U, Doisneau-Sixou S (2017) Influence of vitamin D signaling on hormone receptor status and HER2 expression in breast cancer. J Cancer Res Clin Oncol 143:1107–1122

    CAS  PubMed  Google Scholar 

  4. Fornes O, Castro-Mondragon JA et al (2020) JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48:D87–D92

    CAS  PubMed  Google Scholar 

  5. Pike JW (2011) Genome-wide principles of gene regulation by the vitamin D receptor and its activating ligand. Mol Cell Endocrinol 347:3–10

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Adams JS, Rafison B, Witzel S et al (2014) Regulation of the extrarenal CYP27B1-hydroxylase. J Steroid Biochem Mol Biol 144:22–27

    CAS  PubMed  Google Scholar 

  7. Shao T, Klein P, Grossbard ML (2012) Vitamin D and breast cancer. Oncologist 17:36–45

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Forrest KY, Stuhldreher WL (2011) Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res 359:48–54

    Google Scholar 

  9. Manousaki D, Richards JB (2017) Low vitamin D levels as a risk factor for cancer. Br Med J 359:j4952

    Google Scholar 

  10. Skaaby T, Husemoen LL, Thuesen BH et al (2014) Prospective population-based study of the association between serum 25-hydroxyvitamin-D levels and the incidence of specific types of cancer. Cancer Epidemiol Biomarkers Prev 23:1220–1229

    CAS  PubMed  Google Scholar 

  11. Chlebowski RT, Johnson KC, Kooperberg C et al (2008) Calcium plus vitamin D supplementation and the risk of breast cancer. J Natl Cancer Inst 100:1581–1591

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Villaseñor A, Ballard-Barbash R, Ambs A et al (2013) Associations of serum 25-hydroxyvitamin D with overall and breast cancer-specific mortality in a multiethnic cohort of breast cancer survivors. Cancer Causes Control 24:759–767

    PubMed  PubMed Central  Google Scholar 

  13. Tommie JL, Pinney SM, Nommesen-Rivers LA (2018) Serum vitamin D status and breast cancer risk by receptor status: a systematic review. Nutr Cancer 70:804–820

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lope V, Castelló A, Mena-Bravo A et al (2018) Serum 25-hydroxyvitamin D and breast cancer risk by pathological subtype (MCC-Spain). J Steroid Biochem Mol Biol 182:4–13

    CAS  PubMed  Google Scholar 

  15. Eisman JA, Suva LJ, Sher E et al (1981) Frequency of 1,25-Dihydroxyvitamin D3 receptor in human breast cancer. Cancer Res 41:5121–5124

    CAS  PubMed  Google Scholar 

  16. Al-Azhri J, Zhang Y, Bshara W et al (2017) Tumor expression of vitamin D receptor and breast cancer histopathological characteristics and prognosis. Clin Caner Res 23:97–103

    CAS  Google Scholar 

  17. Huss L, Tuna Butt S, Borgquist S et al (2019) Vitamin D receptor expression in invasive breast tumors and breast cancer survival. Breast Cancer Res 21:84

    PubMed  PubMed Central  Google Scholar 

  18. Lopes N, Sousa B, Martins D et al (2010) Alterations in vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions vitamin D pathways unbalanced in breast lesions. BMC Cancer 10:483

    PubMed  PubMed Central  Google Scholar 

  19. Ditsch N, Toth B, Mayr D et al (2012) The association between vitamin D receptor expression and prolonged overall survival in breast cancer. J Histochem Cytochem 60:121–129

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ditsch N, Mayr D, Lenhard M et al (2012) Correlation of thyroid hormone, retinoid X, peroxisome proliferator-activated, vitamin D and oestrogen/ progesterone receptors in breast carcinoma. Oncol Lett 4:665–671

    PubMed  PubMed Central  Google Scholar 

  21. Zati Zehni A, Jacob S-N, Mumm J-N et al (2019) Hormone Receptor expression in multicentric/ multifocal versus unifocal breast cancer: especially the VDR determines the outcome related to focality. Int J Mol Sci 20:5740

    CAS  PubMed Central  Google Scholar 

  22. Berger U, McClelland RA, Wilson P et al (1991) Immunocytochemical determination of estrogen receptor, progesterone receptor, and 1,25-dihydroxyvitamin D3 receptor in breast cancer and relationship to prognosis. Cancer Res 51:239–244

    CAS  PubMed  Google Scholar 

  23. Soljic M, Mrklic I, Tomic S et al (2018) Prognostic value of vitamin D receptor and insulin-like growth factor receptor 1 expression in triple-negative breast cancer. J Clin Pathol 71:34–39

    CAS  PubMed  Google Scholar 

  24. Kemmis CM, Salvador SM, Smith KM, Welsh J (2006) Human mammary epithelial cells express CYP27B1 and are growth inhibited by 25-hydroxyvitamin D-3, the major circulating form of vitamin D-3. J Nutr 136:887–892

    CAS  PubMed  Google Scholar 

  25. Welsh J (2011) Vitamin D metabolism in mammary gland and breast cancer. Mol Cell Endocrinol 347:55–60

    CAS  PubMed  Google Scholar 

  26. Sheng L, Turner AG, Barratt K et al (2019) Mammary-specific ablation of Cyp24a1 inhibits development, reduces proliferation and increases sensitivity to vitamin D. J Steroid Biochem Mol Biol 189:240–247

    CAS  PubMed  Google Scholar 

  27. Zhalehjoo N, Shakiba Y, Panjehpour M (2017) Gene expression profiles of CYP24A1 and CYP27B1 in malignant and normal breast tissues. Mol Med Rep 15:467–473

    CAS  PubMed  Google Scholar 

  28. De Lyra EC, da Silva IA, Hirata Katayama ML et al (2006) 25(OH)D3 and 1,25(OH)2D3 serum concentration and breast tissue expression of 1α-hydroxylase, 24-hydroxylase and vitamin D receptor in women with and without breast cancer. J Steroid Biochem Mol Biol 100:184–192

    PubMed  Google Scholar 

  29. Townsend K, Banwell CM, Guy M et al (2005) Autocrine metabolism of vitamin D in normal and malignant breast tissue. Clin Cancer Res 11:3579–3586

    CAS  PubMed  Google Scholar 

  30. Richards SE, Weierstahl KA, Kelts JL (2015) Vitamin D effect on growth and vitamin D metabolizing enzymes in triple-negative breast cancer. Anticancer Res 35:805–810

    CAS  PubMed  Google Scholar 

  31. LaPorta E, Welsh J (2014) Modeling vitamin D actions in triple negative/ basal-like breast cancer. J Steroid Biochem Mol Biol 144:65–73

    CAS  PubMed  Google Scholar 

  32. Davis LM, Harris C, Tang L et al (2007) Amplification patterns of three genomic regions predict distant recurrence in breast carcinoma. J Mol Diagn 9:327–336

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tanner MM, Tirkkonen M, Kallioniemi A et al (1995) Amplification of chromosomal region 20q13 in invasive breast cancer: prognostic implications. Clin Cancer Res 1:1455–1461

    CAS  PubMed  Google Scholar 

  34. Somiari SB, Shriver CD, He J et al (2004) Global search for chromosomal abnormalities in infiltrating ductal carcinoma of the breast using array-comparative genomic hybridization. Cancer Gen Cytogen 155:108–118

    CAS  Google Scholar 

  35. Albertson DG, Yistra B, Segraves R et al (2000) Quantitative mapping of amplicon structure by array CGH identifies CYP24 as a candidate oncogene. Nat Genet 25:144–146

    CAS  PubMed  Google Scholar 

  36. Nguyen NT, Vendrell JA, Poulard C et al (2014) A functional interplay between ZNF217 and estrogen receptor alpha exists in luminal breast cancers. Mol Oncol 8:1441–1457

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cerami E, Gao J, Dogrusoz U et al (2012) The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2:401–404

    PubMed  Google Scholar 

  38. Gao J, Aksoy BA, Dogrusoz U et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6:269

    CAS  Google Scholar 

  39. Murray A, Madden SF, Synnott NC et al (2017) Vitamin D receptor as a target for breast cancer therapy. Endocr Related Cancer 24:181–195

    CAS  Google Scholar 

  40. Valrance ME, Brunet AH, Welsh J (2007) Vitamin D receptor-dependent inhibition of mammary tumor growth by EB1089 and ultraviolet radiation in vivo. Endocrinol 148:4887–4894

    CAS  Google Scholar 

  41. Du J, Jiang S, Hu Z et al (2019) Vitamin D receptor activation protects against lipopolysaccharide-induced acute kidney injury through suppression of tubular cell apoptosis. Am J Phys Renal Phys 316:F1068–F1077

    CAS  Google Scholar 

  42. Zhang X, Zanello P (2008) Vitamin D receptor-dependent 1 alpha,25(OH)2 vitamin D3-induced anti-apoptotic PI3K/AKT signaling in osteoblasts. J Bone Miner Res 23:1238–1248

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Berkovich L, Sintov AC, Ben-Shabat S (2013) Inhibition of cancer growth and induction of apoptosis by BGP-13 and BGP-15, new calcipotriene-derived vitamin D3 analogs, in-vitro and in-vivo studies. Invest New Drugs 31:247–255

    PubMed  Google Scholar 

  44. Beaudin SG, Robilotto S, Welsh JE (2015) Comparative regulation of gene expression by 1,25-dihydroxyvitamin D3 in cells derived from normal mammary tissue and breast cancer. J Steroid Biochem Mol Biol 148:96–102

    CAS  PubMed  Google Scholar 

  45. Weitsman GE, Koren R, Zuck E et al (2005) Vitamin D sensitizes breast cancer cells to the action of H2O2: mitochondria as a convergence point in the death pathway. Free Rad Biol Med 39:266–278

    CAS  PubMed  Google Scholar 

  46. Horas K, Zheng Y, Fong-Yee C et al (2019) Loss of the Vitamin D receptor in human breast cancer cells promotes epithelial to mesenchymal cell transition and skeletal colonization. J Bone Mineral Res 34:1721–1732

    CAS  Google Scholar 

  47. Williams JD, Aggarwal A, Swami S et al (2016) Tumor autonomous effects of vitamin D deficiency promote breast cancer metastasis. Endocrinol 157:1341–1347

    CAS  Google Scholar 

  48. Aggarwal A, Feldman D, Feldman BJ (2018) Identification of tumor-autonomous and indirect effects of vitamin D action that inhibit breast cancer growth and tumor progression. J Steroid Biochem Mol Biol 177:155–158

    CAS  PubMed  Google Scholar 

  49. Voutsadakis IA (2016) Epithelial-mesenchymal transition (EMT) and regulation of EMT factors by steroid nuclear receptors in breast cancer: a review and in silico investigation. J Clin Med 5:1

    Google Scholar 

  50. Liu X, Bi L, Wang Q et al (2018) miR-1204 targets VDR to promotes epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 37:3426–3439

    CAS  PubMed  Google Scholar 

  51. Voutsadakis IA (2015) The network of pluripotency, epithelial mesenchymal transition and prognosis of breast cancer. Breast Cancer Targets Ther 7:303–319

    CAS  Google Scholar 

  52. Wahler J, So JY, Cheng LC et al (2015) Vitamin D compounds reduce mammoshere formation and decrease expression of putative stem cell markers in breast cancer. J Steroid Biochem Mol Biol 148:148–155

    CAS  PubMed  Google Scholar 

  53. Shan NL, Wahler J, Lee HJ et al (2017) Vitamin D compounds inhibit cancer stem-like cells and induce differentiation in triple negative breast cancer. J Steroid Biochem Mol Biol 173:122–129

    CAS  PubMed  Google Scholar 

  54. Graziano S, Johnston R, Deng O et al (2016) Vitamin D/vitamin D receptor axis regulates DNA repair during oncogene-induced senescence. Oncogene 35:5362–5376

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Heublein S, Mayr D, Meindl A et al (2017) Vitamin D receptor, Retinoid X receptor and peroxisome proliferator-activated receptor γ are overexpressed in BRCA1 mutated breast cancer and predict prognosis. J Exp Clin Cancer Res 36:57

    PubMed  PubMed Central  Google Scholar 

  56. Carlberg C (2017) Molecular endocrinology of vitamin D on the epigenome level. Mol Cell Endocrinol 453:14–21

    CAS  PubMed  Google Scholar 

  57. Voutsadakis IA (2018) Molecular Lesions of Insulator CTCF and Its Paralogue CTCFL (BORIS) in cancer: an analysis from published genomic studies. High-throughput 7:4

    Google Scholar 

  58. Nurminen V, Seuter S, Carlberg C (2019) Primary vitamin D target genes of human monocytes. Front Physiol 10:194

    PubMed  PubMed Central  Google Scholar 

  59. Seuter S, Neme A, Carlberg C (2018) ETS transcription factor family member GABPA contributes to vitamin D receptor target gene regulation. J Steroid Biochem Mol Biol 177:46–52

    CAS  PubMed  Google Scholar 

  60. Odrowaz Z, Sharroocks AD (2012) The ETS transcription factors ELK1 and GABPA regulate different gene networks to control MCF10A breast epithelial cell migration. PLoS ONE 7:e49892

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Atlas E, Stramwasser M, Whiskin K, Mueller CR (2000) GA-binding protein α/β is a critical regulator of the BRCA1 promoter. Oncogene 19:1933–1940

    CAS  PubMed  Google Scholar 

  62. Jozwik KM, Carroll JS (2012) Pioneer factors in hormone-dependent cancers. Nat Rev Cancer 12:381–385

    CAS  PubMed  Google Scholar 

  63. Fu X, Pereira R, De Angelis C et al (2019) FOXA1 upregulation promotes enhancer and transcriptional reprogramming in endocrine-resistant breast cancer. Proc Natl Acad Sci USA 116:16823–16834

    Google Scholar 

  64. Sheng L, Anderson PH, Turner AG et al (2016) Identification of vitamin D3 target genes in human breast cancer tissue. J Steroid Biochem Mol Biol 164:90–97

    CAS  PubMed  Google Scholar 

  65. O’Brien KM, Sandler DP, Xu Z et al (2018) Vitamin D, DNA methylation, and breast cancer. Breast Cancer Res 20:70

    PubMed  PubMed Central  Google Scholar 

  66. Lopes N, Carvalho J, Durães C et al (2012) 1Alpha,25-dihydroxyvitamin D3 induces de novo E-cadherin expression in triple negative breast cancer cells by CDH1-promoter demethylation. Anticancer Res 32:249–257

    CAS  PubMed  Google Scholar 

  67. Krishnan AV, Swami S, Peng L et al (2010) Tissue-selective regulation of aromatase expression by calcitriol: implications for breast cancer therapy. Endocrinol 151:32–42

    CAS  Google Scholar 

  68. Swami S, Krishnan AV, Peng L et al (2013) Transrepression of the estrogen receptor promoter by calcitriol in human breast cancer cells via two negative vitamin D response elements. Endocr Related Cancer 20:565–577

    CAS  Google Scholar 

  69. Lundqvist J, Kirkegaard T, Laenkholm A-V et al (2018) Williams syndrome transcription factor (WSTF) acts as an activator of estrogen receptor signaling in breast cancer cells and the effect can be abrogated by 1α,25-dihydroxyvitamin D3. J Steroid Biochem Mol Biol 177:171–178

    CAS  PubMed  Google Scholar 

  70. Thakkar A, Wang B, Picon-Ruiz M et al (2016) Vitamin D and androgen receptor-targeted therapy for triple negative breast cancer. Breast Cancer Res Treat 157:77–90

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Madden SF, Clarke C, Gaule P et al (2013) BreastMark: an integrated approach to mining publicly available transcriptomic datasets relating to breast cancer outcome. Breast Cancer Res 15:R52

    PubMed  PubMed Central  Google Scholar 

  72. Christensen GL, Jepsen JS, Fog CK et al (2004) Sequential versus combined treatment of human breast cancer cells with antiestrogens and the vitamin D analogue EB1089 and evaluation of predictive markers for vitamin D treatment. Breast Cancer Res Treat 85:53–63

    CAS  PubMed  Google Scholar 

  73. Zeichner SB, Koru-Sengul T, Shah N et al (2015) Improved clinical outcomes associated with vitamin D supplementation during adjuvant chemotherapy in patients with HER2+ nonmetastatic breast cancer. Clin Breast Cancer 15:e1–e11

    CAS  PubMed  Google Scholar 

  74. Madden JM, Murphy L, Zgaga L, Bennett K (2018) De novo vitamin D supplement use post-diagnosis is associated with breast cancer survival. Breast Cancer Res Treat 172(1):179–190. https://doi.org/10.1007/s10549-018-4896-6

    Article  CAS  PubMed  Google Scholar 

  75. Grossmann M, Ramchand SK, Milat F et al (2019) Assessment and management of bone health in women with estrogen receptor-positive breast cancer receiving endocrine therapy: position statement summary. Med J Aust 211:224–229

    PubMed  Google Scholar 

  76. Turner NC, Ro J, André F, Loi S, Verma S, Iwata H et al (2015) Palbociclib in hormone-receptor-positive advanced breast cancer. N Engl J Med 373:209–219

    CAS  PubMed  Google Scholar 

  77. Sledge GW Jr, Toi M, Neven P, Sohn J, Inoue K, Pivot X et al (2017) MONARCH 2: abemaciclib in combination with fulvestrant in women with ER+/HER2- advanced breast cancer who had progressed while receiving endocrine therapy. J Clin Oncol 25:2875–2884

    Google Scholar 

  78. Bauer SR, Hankinson SE, Bertone-Johnson ER, Ding EL (2013) Plasma vitamin D levels, menopause, and risk of breast cancer: dose-response meta-analysis of prospective studies. Medicine 92:123–131

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis A. Voutsadakis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human and animal rights

This study does not involve human participants or animals.

Informed consent

As there was no direct patient data acquisition for this study, no informed consent was required or obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voutsadakis, I.A. Vitamin D receptor (VDR) and metabolizing enzymes CYP27B1 and CYP24A1 in breast cancer. Mol Biol Rep 47, 9821–9830 (2020). https://doi.org/10.1007/s11033-020-05780-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05780-1

Keywords

Navigation