Skip to main content
Log in

Identification and expression analysis of candidate genes associated with stem gall disease in Coriander (Coriandrum sativum L.) cultivars

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Coriander (Coriandrum sativum L.) is a well-known spice and aromatic crop cultivated globally. Stem gall disease is one of the major constraints for its leaf and seed quality used for consumption and also affecting the yield. The identification of resistance genes and further characterization of such genes could help to understand the molecular basis of resistance and lay a solid ground for cloning of stem gall resistance genes in coriander. To evaluate the genetic expression of disease resistance-relevant genes in popularly grown coriander cultivars in India such as Pant Haritma, Hisar Sugandh, Hisar Surabhi, Hisar Anand, Rajendra Swathi, ACr-1, ACr-2, AgCr-1, CO-2 and CS-6 were used for LRR, GDSL, USP, ANK and PDR gene expression using Real Time PCR along with 18S housekeeping gene as internal control for the normalization. Result revealed the different expression pattern of genes among the cultivars tested. Highest expression was shown in cultivar AgCr-1 followed by Pant Haritma, Hisar Sugandh and ACr-1, and least expression in Hisar Anand, ACr-2, CO-2, Rajendra Swathi and CS-6. Domain analysis revealed the conserved domain relevance of the genes. This is the first report on stem gall resistance gene expression in coriander. The identified genes have a potential role in coriander and further utilize in crop improvement program. We hypothesize that contrasting cultivars can be a good source for candidate gene evaluation and further to use them as potential markers and used in hybridization program focus on incorporating and develop durable disease-resistance into the adapted cultivars of the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

RT-qPCR:

Real-time quantitative PCR

LRR:

Leucine rich repeat

GDSL:

Gly-Asp-Ser-(Leu) motif

USP:

Universal stress protein

ANK:

Ankyrin repeat

PDR:

Probable disease resistance

References

  1. Poggio L, Naranjo CA, de la Vega A (1994) The Chromosomes of Coriandrum sativum L. Cytologia 59(1):17–23

    Article  Google Scholar 

  2. Choudhary S, Pereira A, Basu S (2014) Effect of cryogenic and conventional grinding on the anti-oxidative potential of coriander and turmeric. Int J Seed Spices 2:85–90

    Google Scholar 

  3. Choudhary S, Pereira A, Basu S, Verma AK (2017) Differential antioxidant composition and potential of some commonly used Indian spices. J Agrisearch 4:160–166

    Google Scholar 

  4. Aruna G, Baskaran V (2010) Comparative study on the levels of carotenoids lutein, zeaxanthin and b-carotene in Indian spices of nutritional and medicinal importance. Food Chem 123:404–409

    Article  CAS  Google Scholar 

  5. Mandal S, Mandal M (2015) Coriander (Coriandrum sativum L.) essential oil: chemistry and biological activity. Asian Pac J Trop Biomed 5:421–428

    Article  CAS  Google Scholar 

  6. Mukherji KG, Bhasin J (1986) Plant diseases of India (A source book). Co., Ltd. New Delhi, Tata McGraw Hill Publ, p 88

    Google Scholar 

  7. Kalra A, Patra NK, Singh HP, Singh HB, Mengi N, Naqvi AA, Kumar S, Kumar S (1999) Evaluation of coriander (Coriandrum sativum) collection for essential oil. Indian J Agric Sci 69:657–659

    Google Scholar 

  8. Choudhary S, Sharma R, Jethra G, Vishal MK, Tripathi A (2019) Molecular diversity in coriander (Coriandrum sativum) using RAPD and ISSR markers. Indian J Agric Sci 89:193–198

    CAS  Google Scholar 

  9. Choudhary S, Jethra G, Sharma R, Verma AK (2017) Microsatellite in coriander: a cross species amplification within apiaceae family. Int J Curr Microbiol Appl Sci 5:2714–2721

    Article  CAS  Google Scholar 

  10. Ozsolak F, Milos PM (2011) RNA sequencing: Advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  CAS  PubMed  Google Scholar 

  11. Jain M (2011) Next-generation sequencing technologies for gene expression profiling in plants. Brief Funct Genom 11:63–70

    Article  CAS  Google Scholar 

  12. Naika M, Shameer K, Mathew OK, Gowda R, Sowdhamini R (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:e8–e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Velásquez AC, Castroverde CDM, He SY (2018) Plant-pathogen warfare under changing climate conditions. Curr Biol 28:R619–R634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wen Z, Yao L, Singer SD, Muhammad H, Li Z, Wang X (2017) Constitutive heterologous overexpression of a TIR-NB-ARC-LRR gene encoding a putative disease resistance protein from wild Chinese Vitis pseudoreticulata in Arabidopsis and tobacco enhances resistance to phytopathogenic fungi and bacteria. Plant Physiol Biochem 112:346–361

    Article  CAS  PubMed  Google Scholar 

  15. Christensen AB, Cho BH, Naesby M, Gregersen PL, Brandt J, Madriz-Ordeñana K (2002) The molecular characterisation of the two barley proteins establishes the novel PR-17 family of pathogenesis-related protein. Mol Plant Pathol 3:135–144

    Article  CAS  PubMed  Google Scholar 

  16. Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M, YadaV P (2018) Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 212–213:29–37

    Article  PubMed  CAS  Google Scholar 

  17. Lincoln JE, Sanchez JP, Zumstein K, Gilchrist DG (2018) Plant and animal PR1 family members inhibit programmed cell death and suppress bacterial pathogens in plant tissues. Mol Plant Pathol 19:2111–2123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shameer K, Naika MBN, Shafi KM, Sowdhamini R (2019) Decoding systems biology of plant stress for sustainable agriculture development and optimized food production. Prog Biophys Mol Biol 145:19–39

    Article  CAS  PubMed  Google Scholar 

  19. Choudhary S, Naika MBN, Sharma R, Meena RD, Singh R, Lal G (2019) Transcriptome profiling of coriander: a dual purpose crop unravels stem gall resistance genes. J Genet 98:19

    Article  PubMed  CAS  Google Scholar 

  20. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914

    Article  CAS  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  22. Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, Thanki N, Yamashita RA, Yang M, Zhang D, Zheng C, Lanczycki CJ, Marchler-Bauer A. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res, 8: 48(D1): D265-D268

  23. Schwede T, Kopp J, GuexPeitsch NMC (2003) SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laskowski RA (2001) PDBsum: summaries and analyses of PDB structure. Nucleic Acids Res 29:221–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Malhotra SK (2003) Plant genetic resources of seed spices in India. Seed Spices Newsl 3:1–4

    Google Scholar 

  26. Khare MN, Tiwari SP, Sharma YK (2017) Disease problems in the cultivation of coriander (Coriandrum sativum L.) and their management leading to production of high quality pathogen free seed. Int J Seed Spices 7(1):1–7

    Google Scholar 

  27. Jain S (2018) In vitro studies on dual culture of Protomyces macrosporus on Coriandrum sativum. Int Res J Nat Appl Sci 5(4):118–132

    Google Scholar 

  28. Gupta JS (1954) Disease appraisal of stem gall of Coriandrum sativum. Indian Phytopathol 7:53–60

    Google Scholar 

  29. Singh SP, Gupta JS, Sharma AK (1984) Disease appraisal and crop loss estimates in coriander attacked by Protomyces macrosporus Unger in Uttar Pradesh. Geobios 11(6):276–278

    Google Scholar 

  30. Khan MR, Parveen G. (2016). Screening of some recently developed coriander varieties against stem gall disease caused by Protomyces macrosporus. 7: 8. doi: 10.4172/2157–7471.1000373.

  31. Takken FL, Tameling WI (2009) To nibble at plant resistance proteins. Science 324:744–746

    Article  CAS  PubMed  Google Scholar 

  32. He ZH (2001) Signal network of plant disease resistance. Acta Phytophysiol Sin 27:281–290

    CAS  Google Scholar 

  33. Galli V, Borowski JM, Perin EC, Messias RS, Labonde J, Pereira IS, Silva SD, Rombaldi CV (2015) Validation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in strawberry fruits using different cultivars and osmotic stresses. Gene 554:205–214

    Article  CAS  PubMed  Google Scholar 

  34. Galata M, (2013). Transcriptome profiling, and the cloning and characterization of a monoterpene synthase from the seeds of Coriandrum Sativum L. (T). University of British Columbia.

  35. Divya P, Puthusseri B, Savanur MA, Lokesh V, Neelwarne B (2018) Effects of methyl jasmonate and carotenogenic inhibitors on gene expression and carotenoid accumulation in coriander (Coriandrum sativum L.) foliage. Food Res Int 111:11–19

    Article  CAS  PubMed  Google Scholar 

  36. Tulsani NJ, Hamid R, Jacob F, Umretiya NG, Nandha AK, Tomar RS, Golakiya BA (2019) Transcriptome landscaping for gene mining and SSR marker development in coriander (Coriandrum sativum L.). Genomics 112(2):1545–1553

    Article  PubMed  CAS  Google Scholar 

  37. Song X, Wang J, Li N, Jigao Yu, Meng F, Wei C, Liu C, Chen W, Nie F, Zhang Z, Gong Ke, Li X, Jingjing Hu, Yang Q, Li Y, Li C, Feng S, Guo He, Yuan J, Pei Q, Tong Yu, Kang Xi, Zhao W, Lei T, Sun P, Wang Li, Ge W, Guo Di, Duan X, Shen S, Cui C, Ying Yu, Xie Y, Zhang J, Hou Y, Wang J, Wang J, Li X-Q, Paterson AH, Wang X (2020) Deciphering the high-quality genome sequence of coriander that causes controversial feelings. Plant Biotechnol J 18:1444–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tehlan SK, Thakral KK, Partap PS (2009) Hisar Sugandh: a high yielding variety of coriander. CCS haryana agricultural university. Hisar Haryana J Horticul Sci 38:106–107

    Google Scholar 

  39. Singh HB, Singh A, Tripathi A, Rai SK, Katiyar RS, Johri JK, Singh SP (2003) Evaluation of Indian coriander accessions for resistance against stem gall disease. Genet Resour Crop Evol 50:339–343

    Article  CAS  Google Scholar 

  40. Malhotra SK, Kakani RK, Sharma YK, Singh DK (2016) Ajmer coriander- 1(NRCSS, ACR-1) resistant to stem gal disease- an innovative farming technology. Indian J. Arecanut Spices Medic Pl 18:1–7

    Google Scholar 

  41. Lal G, Dubey PN, Mishra BK, Barolia SK (2018) Calendar published by ITMU, ICAR- National Research Centre on Seed Spices, Ajmer, Rajasthan. Pp, India, p 27

    Google Scholar 

  42. Song H, Wang P, Li C, Han S, Zhao C, Xia H (2017) Comparative analysis of NBS-LRR genes and their response to Aspergillus flavus in Arachis. PLoS ONE 12:e0171181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Madsen LH, Collins NC, Rakwalska M (2003) Barley disease resistance gene analogs of the NBS-LRR class: identification and mapping. Mol Gen Genom 269:150–161

    Article  CAS  Google Scholar 

  44. Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    Article  CAS  PubMed  Google Scholar 

  45. Van Ooijen G, Mayr G, Kasiem MM, Albrecht M, Cornelissen BJ, Takken FL (2008) Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot 59(6):1383–1397

    Article  PubMed  CAS  Google Scholar 

  46. Lai CP, Huang LM, Chen LFO, Chan MT, Shaw JF (2017) Genome-wide analysis of GDSL-type esterases/lipases in Arabidopsis. Plant Mol Biol 95:181–197

    Article  CAS  PubMed  Google Scholar 

  47. Ding L, Li M, Wang W, Cao J, Wang Z, Zhu K, Yang Y, Li Y, Tan X (2019) Advances in plant GDSL lipases: from sequences to functional mechanisms. Acta Physiol Plant 41:151

    Article  Google Scholar 

  48. Juqiang Y, Jing W, Jing Wang HZHZ (2002) An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism. Plant J 29:193–202

    Article  Google Scholar 

  49. Pumplin N, Mondo SJ, Topp S, Starker CG, Gantt JS (2010) Medicago truncatula Vapyrin is a novel protein required for arbuscular mycorrhizal symbiosis. Plant J 61:482–494

    Article  CAS  PubMed  Google Scholar 

  50. Yang Y, Zhang Y, Ding P, Johnson K, Li X (2012) The ankyrin-repeat transmembrane protein BDA1 functions downstream of the receptor-like protein SNC2 to regulate plant immunity. Plant Physiol 159:1857–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kerk D, Bulgrien J, Smith DW, Gribskov M (2003) Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol 131:1209–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chi YH, Koo SS, Oh HT, Lee ES, Park JH, Phan KAT, Wi SD, Bae SB, Paeng SK, Chae HB, Kang CH, Kim MG, Kim WY, Yun DJ, Lee SY (2019) The physiological functions of universal stress proteins and their molecular mechanism to protect plants from environmental stresses. Front Plant Sci 5(10):750

    Article  Google Scholar 

Download references

Acknowledgements

We thank Director, NRCSS for timely support and encouragement during the research work. The research is supported by the ICAR-NRC on Seed Spices, Ajmer, Rajasthan, India. Authors also acknowledge the support received by the UHS, Bagalkote, Karnataka for infrastructure facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharda Choudhary.

Ethics declarations

Conflicts of interest

We have no conflicts of interest.

Ethics approval

Our research does not include Human Participants and/or Animals.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Naika, M.B.N. & Meena, R.D. Identification and expression analysis of candidate genes associated with stem gall disease in Coriander (Coriandrum sativum L.) cultivars. Mol Biol Rep 47, 5403–5409 (2020). https://doi.org/10.1007/s11033-020-05630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05630-0

Keywords

Navigation