Skip to main content
Log in

Analysis of ciliogenesis process in the bovine oviduct based on immunohistochemical classification

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The oviductal epithelium is composed of ciliated and non-ciliated cells. The proportions of these cells change during the estrous cycle. However, the mechanism underlying this cyclic change in the cell proportions remains unclear. Our previous study indicated that ciliated cells are derived from non-ciliated cells. Here, we aimed to investigate the mechanism regulating the changes in the populations of ciliated and non-ciliated cells during the estrous cycle. To this end, we examined the numbers of cells that were positive for acetylated-α-tubulin (cilia marker), Ki67 (proliferation marker), PAX8 (non-ciliated cell marker), and FOXJ1 and MYB (ciliogenesis markers) in the epithelial cells at four different estrous stages (Stage I: days 1–4 after ovulation, Stage II: days 5–10, Stage III: days 11–17, and Stage IV: days 18–20) by immunohistochemistry. The oviductal epithelial cells expressed either FOXJ1 or PAX8. All the acetylated-α-tubulin+ cells were positive for FOXJ1, although there were a few acetylated-α-tubulin/FOXJ1+ cells. MYB was expressed in both the FOXJ1+ and PAX8+ cells, but it was not expressed in the Ki67+ cells. The numbers of Ki67+ and MYB+ cells were the highest in Stage IV, while the numbers of FOXJ1+ and acetylated-α-tubulin+ cells were the highest in the following Stage I, suggesting that ciliogenesis is associated with the estrous cycle. Thus, based on immunological classification, the oviductal epithelium contains at least seven types of cells at different translational/transcriptional states, and their number is regulated by the estrous cycle. This cyclic event might provide an optimal environment for gamete transport, fertilization, and embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Croxatto HB (2002) Physiology of gamete and embryo transport through the fallopian tube. Reprod Biomed Online 4(2):160–169

    Article  CAS  Google Scholar 

  2. Menezo Y, Guerin P (1997) The mammalian oviduct: biochemistry and physiology. Eur J Obstet Gynecol Reprod Biol 73(1):99–104

    Article  CAS  Google Scholar 

  3. Hunter RH (1998) Have the Fallopian tubes a vital rôle in promoting fertility? Acta Obstet Gynecol Scand 77(5):475–486

    Article  CAS  Google Scholar 

  4. Hunter RH (2012) Components of oviduct physiology in eutherian mammals. Biol Rev Camb Philos Soc 87(1):244–255. https://doi.org/10.1111/j.1469-185X.2011.00196.x

    Article  CAS  PubMed  Google Scholar 

  5. Suarez SS, Brockman K, Lefebvre R (1997) Distribution of mucus and sperm in bovine oviducts after artificial insemination: the physical environment of the oviductal sperm reservoir. Biol Reprod 56(2):447–453. https://doi.org/10.1095/biolreprod56.2.447

    Article  CAS  PubMed  Google Scholar 

  6. Abe H, Hoshi H (2007) Regional and cyclic variations in the ultrastructural features of secretory cells in the oviductal epithelium of the Chinese Meishan pig. Reprod Domest Anim 42(3):292–298. https://doi.org/10.1111/j.1439-0531.2006.00781.x

    Article  CAS  PubMed  Google Scholar 

  7. Chen S, Einspanier R, Schoen J (2013) In vitro mimicking of estrous cycle stages in porcine oviduct epithelium cells: estradiol and progesterone regulate differentiation, gene expression, and cellular function. Biol Reprod 89(3):54. https://doi.org/10.1095/biolreprod.113.108829

    Article  CAS  PubMed  Google Scholar 

  8. Abe H, Oikawa T (1993) Observations by scanning electron microscopy of oviductal epithelial cells from cows at follicular and luteal phases. Anat Rec 235(3):399–410. https://doi.org/10.1002/ar.1092350309

    Article  CAS  PubMed  Google Scholar 

  9. Jain R, Ray JM, Pan JH, Brody SL (2012) Sex hormone-dependent regulation of cilia beat frequency in airway epithelium. Am J Respir Cell Mol Biol 46(4):446–453. https://doi.org/10.1165/rcmb.2011-0107OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chu DT, Klymkowsky MW (1989) The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus. Dev Biol 136(1):104–117

    Article  CAS  Google Scholar 

  11. Bowen NJ, Logani S, Dickerson EB, Kapa LB, Akhtar M, Benigno BB, McDonald JF (2007) Emerging roles for PAX8 in ovarian cancer and endosalpingeal development. Gynecol Oncol 104(2):331–337. https://doi.org/10.1016/j.ygyno.2006.08.052

    Article  CAS  PubMed  Google Scholar 

  12. Akison LK, Boden MJ, Kennaway DJ, Russell DL, Robker RL (2014) Progesterone receptor-dependent regulation of genes in the oviducts of female mice. Physiol Genom 46(16):583–592. https://doi.org/10.1152/physiolgenomics.00044.2014

    Article  CAS  Google Scholar 

  13. Tan FE, Vladar EK, Ma L, Fuentealba LC, Hoh R, Espinoza FH, Axelrod JD, Alvarez-Buylla A, Stearns T, Kintner C, Krasnow MA (2013) Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development 140(20):4277–4286. https://doi.org/10.1242/dev.094102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu X, Ng CP, Habacher H, Roy S (2008) Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet 40(12):1445–1453. https://doi.org/10.1038/ng.263

    Article  CAS  PubMed  Google Scholar 

  15. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182(3):311–322

    Article  CAS  Google Scholar 

  16. Ito S, Kobayashi Y, Yamamoto Y, Kimura K, Okuda K (2016) Remodeling of bovine oviductal epithelium by mitosis of secretory cells. Cell Tissue Res 366(2):403–410. https://doi.org/10.1007/s00441-016-2432-8

    Article  CAS  PubMed  Google Scholar 

  17. Anderson RG, Brenner RM (1971) The formation of basal bodies (centrioles) in the Rhesus monkey oviduct. J Cell Biol 50(1):10–34

    Article  CAS  Google Scholar 

  18. Sorokin SP (1968) Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J Cell Sci 3(2):207–230

    CAS  PubMed  Google Scholar 

  19. Spassky N, Meunier A (2017) The development and functions of multiciliated epithelia. Nat Rev Mol Cell Biol 18(7):423–436. https://doi.org/10.1038/nrm.2017.21

    Article  CAS  PubMed  Google Scholar 

  20. Rock JR, Hogan BL (2011) Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol 27:493–512. https://doi.org/10.1146/annurev-cellbio-100109-104040

    Article  CAS  PubMed  Google Scholar 

  21. Rawlins EL, Hogan BL (2008) Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol 295(1):L231–L234. https://doi.org/10.1152/ajplung.90209.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen F, Fine A (2016) Stem cells in lung injury and repair. Am J Pathol 186(10):2544–2550. https://doi.org/10.1016/j.ajpath.2016.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH, Hogan BL (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA 106(31):12771–12775. https://doi.org/10.1073/pnas.0906850106

    Article  PubMed  Google Scholar 

  24. Rawlins EL, Okubo T, Xue Y, Brass DM, Auten RL, Hasegawa H, Wang F, Hogan BL (2009) The role of Scgb1a1 + Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4(6):525–534. https://doi.org/10.1016/j.stem.2009.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song H, Yao E, Lin C, Gacayan R, Chen MH, Chuang PT (2012) Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci USA 109(43):17531–17536. https://doi.org/10.1073/pnas.1207238109

    Article  CAS  PubMed  Google Scholar 

  26. Ireland JJ, Murphee RL, Coulson PB (1980) Accuracy of predicting stages of bovine estrous cycle by gross appearance of the corpus luteum. J Dairy Sci 63(1):155–160. https://doi.org/10.3168/jds.S0022-0302(80)82901-8

    Article  CAS  PubMed  Google Scholar 

  27. Miyamoto Y, Skarzynski DJ, Okuda K (2000) Is tumor necrosis factor alpha a trigger for the initiation of endometrial prostaglandin F(2alpha) release at luteolysis in cattle? Biol Reprod 62(5):1109–1115. https://doi.org/10.1095/biolreprod62.5.1109

    Article  CAS  PubMed  Google Scholar 

  28. Okuda K, Kito S, Sumi N, Sato K (1988) A study of the central cavity in the bovine corpus luteum. Vet Rec 123(7):180–183. https://doi.org/10.1136/vr.123.7.180

    Article  CAS  PubMed  Google Scholar 

  29. Meunier A, Azimzadeh J (2016) Multiciliated cells in animals. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a028233

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jackson PK, Attardi LD (2016) p73 and FoxJ1: programming multiciliated epithelia. Trends Cell Biol 26(4):239–240. https://doi.org/10.1016/j.tcb.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. You Y, Huang T, Richer EJ, Schmidt JE, Zabner J, Borok Z, Brody SL (2004) Role of f-box factor foxj1 in differentiation of ciliated airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 286(4):L650–L657. https://doi.org/10.1152/ajplung.00170.2003

    Article  CAS  PubMed  Google Scholar 

  32. Li S, O’Neill SR, Zhang Y, Holtzman MJ, Takemaru KI, Korach KS, Winuthayanon W (2017) Estrogen receptor α is required for oviductal transport of embryos. FASEB J 31(4):1595–1607. https://doi.org/10.1096/fj.201601128R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pardo-Saganta A, Law BM, Gonzalez-Celeiro M, Vinarsky V, Rajagopal J (2013) Ciliated cells of pseudostratified airway epithelium do not become mucous cells after ovalbumin challenge. Am J Respir Cell Mol Biol 48(3):364–373. https://doi.org/10.1165/rcmb.2012-0146OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghosh A, Syed SM, Tanwar PS (2017) Genetic cell lineage tracing reveals that oviductal secretory cells self-renew and give rise to ciliated cells. Development 144(17):3031–3041. https://doi.org/10.1242/dev.149989

    Article  CAS  PubMed  Google Scholar 

  35. Pardo-Saganta A, Law BM, Tata PR, Villoria J, Saez B, Mou H, Zhao R, Rajagopal J (2015) Injury induces direct lineage segregation of functionally distinct airway basal stem/progenitor cell subpopulations. Cell Stem Cell 16(2):184–197. https://doi.org/10.1016/j.stem.2015.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pan JH, Adair-Kirk TL, Patel AC, Huang T, Yozamp NS, Xu J, Reddy EP, Byers DE, Pierce RA, Holtzman MJ, Brody SL (2014) Myb permits multilineage airway epithelial cell differentiation. Stem Cells 32(12):3245–3256. https://doi.org/10.1002/stem.1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang L, Fu C, Fan H, Du T, Dong M, Chen Y, Jin Y, Zhou Y, Deng M, Gu A, Jing Q, Liu T (2013) miR-34b regulates multiciliogenesis during organ formation in zebrafish. Development 140(13):2755–2764. https://doi.org/10.1242/dev.092825

    Article  CAS  PubMed  Google Scholar 

  38. Look DC, Walter MJ, Williamson MR, Pang L, You Y, Sreshta JN, Johnson JE, Zander DS, Brody SL (2001) Effects of paramyxoviral infection on airway epithelial cell Foxj1 expression, ciliogenesis, and mucociliary function. Am J Pathol 159(6):2055–2069. https://doi.org/10.1016/S0002-9440(10)63057-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hsu HS, Liu CC, Lin JH, Hsu TW, Su K, Hung SC (2014) Repair of naphthalene-induced acute tracheal injury by basal cells depends on β-catenin. J Thorac Cardiovasc Surg 148(1):322–332. https://doi.org/10.1016/j.jtcvs.2013.10.039

    Article  CAS  PubMed  Google Scholar 

  40. Vladar EK, Stratton MB, Saal ML, Salazar-De Simone G, Wang X, Wolgemuth D, Stearns T, Axelrod JD (2018) Cyclin-dependent kinase control of motile ciliogenesis. Elife. https://doi.org/10.7554/eLife.36375

    Article  PubMed  PubMed Central  Google Scholar 

  41. Otto T, Candido SV, Pilarz MS, Sicinska E, Bronson RT, Bowden M, Lachowicz IA, Mulry K, Fassl A, Han RC, Jecrois ES, Sicinski P (2017) Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc Natl Acad Sci USA 114(40):10660–10665. https://doi.org/10.1073/pnas.1702914114

    Article  CAS  PubMed  Google Scholar 

  42. Park KS, Wells JM, Zorn AM, Wert SE, Laubach VE, Fernandez LG, Whitsett JA (2006) Transdifferentiation of ciliated cells during repair of the respiratory epithelium. Am J Respir Cell Mol Biol 34(2):151–157. https://doi.org/10.1165/rcmb.2005-0332OC

    Article  CAS  PubMed  Google Scholar 

  43. Erjefält JS, Erjefält I, Sundler F, Persson CG (1995) In vivo restitution of airway epithelium. Cell Tissue Res 281(2):305–316. https://doi.org/10.1007/bf00583399

    Article  PubMed  Google Scholar 

  44. Tadokoro T, Wang Y, Barak LS, Bai Y, Randell SH, Hogan BL (2014) IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci USA 111(35):E3641–E3649. https://doi.org/10.1073/pnas.1409781111

    Article  CAS  PubMed  Google Scholar 

  45. Schmid A, Sailland J, Novak L, Baumlin N, Fregien N, Salathe M (2017) Modulation of Wnt signaling is essential for the differentiation of ciliated epithelial cells in human airways. FEBS Lett 591(21):3493–3506. https://doi.org/10.1002/1873-3468.12851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tríbulo P, Siqueira LGB, Oliveira LJ, Scheffler T, Hansen PJ (2018) Identification of potential embryokines in the bovine reproductive tract. J Dairy Sci 101(1):690–704. https://doi.org/10.3168/jds.2017-13221

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Numbers 17H05041 (YY), and Grant-in-Aid for JSPS Fellows Grant Numbers 18J14047 (SI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Kimura.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, S., Yamamoto, Y. & Kimura, K. Analysis of ciliogenesis process in the bovine oviduct based on immunohistochemical classification. Mol Biol Rep 47, 1003–1012 (2020). https://doi.org/10.1007/s11033-019-05192-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05192-w

Keywords

Navigation