Skip to main content

Advertisement

Log in

Isoquercetin regulates SREBP-1C via AMPK pathway in skeletal muscle to exert antihyperlipidemic and anti-inflammatory effects in STZ induced diabetic rats

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) is a cluster of metabolic diseases that exhibits high blood glucose levels accompanied by hyperlipidemia and inflammation. DM is the primary risk factor contributes majorly to cardiovascular disease (CVD) mediated morbidity and mortality. The incidence of dyslipidemia seems to attribute considerably to the initiation of CVDs. The beneficial action of isoquercetin on hyperlipidemia and related signaling pathways are not documented yet, hence we decide to carry out this study. The experimental rats were divided into five groups: Group 1, control rats; group 2, isoquercetin control (40 mg/kg b.w); group 3, diabetic rats (STZ-40 mg/kg b.w); group 4, diabetic + isoquercetin (40 mg/kg b.w); and group 5, diabetic + glibenclamide (600 µg/kg b.w). The animals were sacrificed at the end of the experimental duration of 45 days. Results of our analysis reveal that isoquercetin have a major impact on the tissue lipid profile, isoquercetin strongly regulates the expression of various lipid-metabolizing enzymes, C-reactive protein, expression of various inflammatory genes, SREBP-1C genes and proteins and AMP-activated protein kinase-α (AMPK) signaling pathway genes and proteins. Results recommend that isoquercetin can be effective in mitigating the consequences of hyperlipidemia and DM.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

AMPK-α:

AMP-activated protein kinase-α

DM:

Diabetes mellitus

FAS:

Fatty acid synthase

HDL:

High-density lipoprotein

HMG Co-A:

3-Hydroxy 3-methyl glutaryl coenzyme A

LCAT:

Lecithin cholesterol acyltransferase

LDL:

Low-density lipoprotein

LPL:

Lipoprotein lipase

PL:

Phospholipids

STZ:

Streptozotocin

SREBP-1C:

Sterol regulatory element-binding protein-1

TC:

Total cholesterol

T2DM:

Type 2 diabetes mellitus

TG:

Triglycerides

References

  1. Leon BM, Maddox TM (2015) Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes 6:1246–1258. https://doi.org/10.4239/wjd.v6.i13.1246

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rines AK, Sharabi K, Tavares CDJ, Puigserver P (2016) Targeting hepatic glucose output in the treatment of type 2 diabetes. Nat Rev Drug Discov 15:786–804. https://doi.org/10.1038/nrd.2016.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Renard CB, Kramer F, Johansson F, Lamharzi N, Tannock LR, Herrath MG, Chait A, Bornfeldt KE (2004) Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. J Clin Invest 114:659–668

    Article  CAS  Google Scholar 

  4. Siasos G, Tousoulis D, Oikonomou E, Zaromitidou M, Stefanadis C, Papavassiliou AG (2011) Inflammatory markers in hyperlipidemia: from experimental models to clinical practice. Curr Pharm Des 17:4132–4146

    Article  CAS  Google Scholar 

  5. Ruderman NB, Carling D, Prentki M, Cacicedo JM (2013) AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 123:2764–2772. https://doi.org/10.1172/JCI67227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13(4):376–388

    Article  CAS  Google Scholar 

  7. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jayachandran M, Wu Z, Ganesan K, Khalid S, Chung SM, Xu B (2019) Isoquercetin upregulates antioxidant genes, suppresses inflammatory cytokines and regulates AMPK pathway in streptozotocin-induced diabetic rats. Chem Biol Interact 303:62–69. https://doi.org/10.1016/j.cbi.2019.02.017

    Article  CAS  PubMed  Google Scholar 

  9. Morikawa K, Nonaka M, Narahara M, Torii I, Kawaguchi K, Yoshikawa T, Kumazawa Y, Morikawa S (2003) Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci 74:709–721

    Article  CAS  Google Scholar 

  10. Jayachandran M, Zhang T, Ganesan K, Xu B, Chung SSM (2018) Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. Eur J Pharmacol 829:112–120. https://doi.org/10.1016/j.ejphar.2018.04.015

    Article  CAS  PubMed  Google Scholar 

  11. Kim HY, Moon BH, Lee HJ, Choi DH (2004) Flavonoid glycosides from the leaves of Eucommia ulmoides O with glycation inhibitory activity. J Ethnopharmacol 93:227–230

    Article  CAS  Google Scholar 

  12. Sheikh BA, Pari L, Rathinam A, Chandramohan R (2015) Trans-anethole, a terpenoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats. Biochimie 112:57–65. https://doi.org/10.1016/j.biochi.2015.02.008

    Article  CAS  PubMed  Google Scholar 

  13. Folch J, Lees M, Solane SGH (1957) A simple method for isolation and purification of total lipids from animal tissues. J Biol Chem 26:497–509

    Google Scholar 

  14. Zlatkis A, Zak B, Boyle GJ (1953) A simple method for determination of serum cholesterol. J. Clin. Med Res 41:486–492

    CAS  Google Scholar 

  15. Fossati P, Prencipe L (1982) Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem 28:2077–2080

    CAS  PubMed  Google Scholar 

  16. Falholt K, Lund B, Falholt W (1973) An easy colorimetric micromethod for routine determination of free fatty acids in plasma. Clin Chim Acta 46:105–111

    Article  CAS  Google Scholar 

  17. Zilversmit BB, Davis AK (1950) Micro determination of plasma phospholipids by trichloroacetic acid precipitation. J Lab Clin Med 35:155–160

    CAS  PubMed  Google Scholar 

  18. Hitz J, Steinmetz J, Siest G (1983) Plasma lecithin cholesterol acyltransferase – reference values and effects of xenobiotics. Clin Chim Acta 133:85–96

    Article  CAS  Google Scholar 

  19. Korn ED (1955) Clearing factor: a heparin activated lipoprotein lipase: Isolation and characterization of enzyme from normal rats. J Biol Chem 215:1–26

    CAS  PubMed  Google Scholar 

  20. Philipp B, Shapiro DJ (1970) Improved methods for the assay and activation of 3-hydroxy-3-methyl glutaryl coenzyme A reductase. J Lipid Res 20:588–593

    Google Scholar 

  21. American Diabetes Association (2009) Diagnosis and classification of diabetes mellitus. Diabetes Care 32:S62–S67. https://doi.org/10.2337/dc10-S062

    Article  PubMed Central  Google Scholar 

  22. Ahmad WNHW, Sakri F, Mokhsin A, Rahman T, Nasir NM, Abdul-Razak S, Md Yasin M, Ismail AM, Ismail Z, Nawawi H (2015) Low serum high-density lipoprotein cholesterol concentration is an independent predictor for enhanced inflammation and endothelial activation. PLoS ONE 10:e0116867. https://doi.org/10.1371/journal.pone.0116867

    Article  Google Scholar 

  23. DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32:S157–S163. https://doi.org/10.2337/dc09-S302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schofield JD, Liu Y, Rao-Balakrishna P, Malik RA, Soran H (2016) Diabetes dyslipidemia. Diabetes Ther 7:203–219. https://doi.org/10.1007/s13300-016-0167-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jayaraman R, Subramani S, Abdullah SHS, Udaiyar M (2018) Antihyperglycemic effect of hesperetin, a citrus flavonoid, extenuates hyperglycemia and exploring the potential role in antioxidant and antihyperlipidemic in streptozotocin-induced diabetic rats. Biomed Pharmacother 97:98–106. https://doi.org/10.1016/j.biopha.2017.10.102

    Article  CAS  PubMed  Google Scholar 

  26. Zodda D, Giammona R, Schifilliti S (2018) Treatment strategy for dyslipidemia in cardiovascular disease prevention: focus on old and new drugs. Pharmacy (Basel) 6(1):E10. https://doi.org/10.3390/pharmacy6010010

    Article  Google Scholar 

  27. Srivastava RAK, Pinkosky SL, Filippov S, Hanselman JC, Cramer CT, Newton RS (2012) AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res 53:2490–2514. https://doi.org/10.1194/jlr.R025882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B, Park O, Luo Z, Lefai E, Shyy JY, Gao B, Wierzbicki M, Verbeuren TJ, Shaw RJ, Cohen RA, Zang M (2011) AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 13:376–388. https://doi.org/10.1016/j.cmet.2011.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rui L (2014) Energy metabolism in the liver. Compr Physiol 4:177–197. https://doi.org/10.1002/cphy.c130024

    Article  PubMed  PubMed Central  Google Scholar 

  30. Commerford SR, Peng L, Dube JJ, Doherty RM (2004) In vivo regulation of SREBP-1c in skeletal muscle: effects of nutritional status, glucose, insulin, and leptin. Am J Physiol Regul Integr Comp Physiol 287:R218–R227

    Article  CAS  Google Scholar 

  31. Badawi A, Klip A, Haddad P, Cole DEC, Bailo BG, El-Sohemy A, Karmali M (2010) Type 2 diabetes mellitus and inflammation: prospects for biomarkers of risk and nutritional intervention. Diabetes Metab Syndr Obes 3:173–186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Ms. Yinhua Liu in Zhuhai Campus of Zunyi Medical University for her technical assistance on the use of the animal facility.

Funding

The work was jointly supported by two grants R201714 and R201914 from Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China.

Author information

Authors and Affiliations

Authors

Contributions

BX and SSMC designed, written and proofread the manuscript, MJ designed, carried out the experiments, written and proofread the manuscript, TZ helped in feeding the animals and dissection, ZW helped in carrying out few molecular studies.

Corresponding author

Correspondence to Baojun Xu.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayachandran, M., Zhang, T., Wu, Z. et al. Isoquercetin regulates SREBP-1C via AMPK pathway in skeletal muscle to exert antihyperlipidemic and anti-inflammatory effects in STZ induced diabetic rats. Mol Biol Rep 47, 593–602 (2020). https://doi.org/10.1007/s11033-019-05166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-05166-y

Keywords

Navigation