Skip to main content

Advertisement

Log in

Influence of adjuvant Coenzyme Q10 on inflammatory and oxidative stress biomarkers in patients with bipolar disorders during the depressive episode

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Bipolar disorder (BPD) is a severe and chronic mental disease with high rates of social and functional disability. To explain the emergence and maintenance of BPD, increasing attention has been focused on dimensions of inflammation and oxidative stress (OTS). Coenzyme Q10 (CoQ10) is known for its anti-oxidant and anti-inflammatory effects; accordingly, the aim of the present study was to investigate, if compared to placebo, adjuvant CoQ10 might favorably impact on serum levels of inflammatory and OTS biomarkers in patients with BPD during their depressive phase. A total of 89 BPD patients, currently in a depressive episode were allocated by block randomization either to the adjuvant CoQ10 (200 mg/day) condition or to the placebo condition. At baseline and 8 weeks later at the end of the study, serum levels of total antioxidant capacity (TAC), total thiol groups (TTG), catalase activity (CAT), nitric oxide (NO), malondialdehyde (MDA), tumor necrosis factor-alpha (TNF-α), interlukin-6 (IL-6), and IL-10 were assessed. 69 patients completed the 8-week lasting study. Compared to baseline and to the placebo condition, serum levels of TTG and TAC significantly increased, and TNF-α, IL-10, and NO statistically decreased over time in the adjuvant CoQ10 condition. No statistically significant changes were observed for CAT, MDA, and IL-6. The pattern of results suggests that compared to placebo and over a time lapse of 8 weeks, adjuvant CoQ10 favorably impacted on OTS and inflammatory biomarkers in patients with BPD during the depressive episode. Thus, CoQ10 might be considered a safe and effective strategy for treatment of patients with BPD during their depressive phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fagiolini A, Forgione R, Maccari M, Cuomo A, Morana B, Dell’Osso MC, Pellegrini F, Rossi A (2013) Prevalence, chronicity, burden and borders of bipolar disorder. J Affect Disord 148(2):161–169

    Article  PubMed  Google Scholar 

  2. Sanchez-Moreno J, Martinez-Aran A, Tabarés-Seisdedos R, Torrent C, Vieta E, Ayuso-Mateos J (2009) Functioning and disability in bipolar disorder: an extensive review. Psychother Psychosom 78(5):285–297

    Article  CAS  PubMed  Google Scholar 

  3. Kupfer DJ (2005) The increasing medical burden in bipolar disorder. JAMA 293(20):2528–2530

    Article  CAS  PubMed  Google Scholar 

  4. Tondo L, Isacsson G, Baldessarini RJ (2003) Suicidal behaviour in bipolar disorder. CNS Drugs 17(7):491–511

    Article  CAS  PubMed  Google Scholar 

  5. Berk M, Berk L, Davey CG, Moylan S, Giorlando F, Singh AB, Kalra H, Dodd S, Malhi GS (2013) Treatment of bipolar depression. Med J Aust 199(6 Suppl):S32–S35

    PubMed  Google Scholar 

  6. Manji HK, Quiroz JA, Payne JL, Singh J, Lopes BP, Viegas JS, Zarate CA (2003) The underlying neurobiology of bipolar disorder. World Psychiatry 2(3):136

    PubMed  PubMed Central  Google Scholar 

  7. Maletic V, Raison C (2014) Integrated neurobiology of bipolar disorder. Front Psychiatry 5:98

    Article  PubMed  PubMed Central  Google Scholar 

  8. Munkholm K, Brauner JV, Kessing LV, Vinberg M (2013) Cytokines in bipolar disorder vs healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res 47(9):1119–1133. https://doi.org/10.1016/j.jpsychires.2013.05.018

    Article  PubMed  Google Scholar 

  9. Rosenblat JD, Cha DS, Mansur RB, McIntyre RS (2014) Inflamed moods: a review of the interactions between inflammation and mood disorders. Prog Neuropsychopharmacol Biol Psychiatry 53:23–34

    Article  CAS  PubMed  Google Scholar 

  10. Maes M, Kubera M, Obuchowiczwa E, Goehler L, Brzeszcz J (2011) Depression’s multiple comorbidities explained by (neuro) inflammatory and oxidative & nitrosative stress pathways. Neuroendocrinol Lett 32(1):7–24

    CAS  PubMed  Google Scholar 

  11. Moylan S, Maes M, Wray N, Berk M (2013) The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 18(5):595

    Article  CAS  PubMed  Google Scholar 

  12. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70(1):31–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ortiz-Domínguez A, Hernández ME, Berlanga C, Gutiérrez-Mora D, Moreno J, Heinze G, Pavón L (2007) Immune variations in bipolar disorder: phasic differences. Bipolar Disord 9(6):596–602

    Article  PubMed  Google Scholar 

  14. Modabbernia A, Taslimi S, Brietzke E, Ashrafi M (2013) Cytokine alterations in bipolar disorder: a meta-analysis of 30 studies. Biol Psychiatry 74(1):15–25

    Article  CAS  PubMed  Google Scholar 

  15. Barbosa IG, Bauer ME, Machado-Vieira R, Teixeira AL (2014) Cytokines in bipolar disorder: paving the way for neuroprogression. Neural Plast. https://doi.org/10.1155/2014/360481

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reynolds JL, Ignatowski TA, Sud R, Spengler RN (2004) Brain-derived tumor necrosis factor-alpha and its involvement in noradrenergic neuron functioning involved in the mechanism of action of an antidepressant. J Pharmacol Exp Ther 310(3):1216–1225. https://doi.org/10.1124/jpet.104.067835

    Article  CAS  PubMed  Google Scholar 

  17. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yucel M, Gama CS, Dodd S, Dean B, Magalhaes PV, Amminger P, McGorry P, Malhi GS (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev 35(3):804–817. https://doi.org/10.1016/j.neubiorev.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  18. Andreazza AC, Kauer-Sant’anna M, Frey BN, Bond DJ, Kapczinski F, Young LT, Yatham LN (2008) Oxidative stress markers in bipolar disorder: a meta-analysis. J Affect Disord 111(2–3):135–144. https://doi.org/10.1016/j.jad.2008.04.013

    Article  CAS  PubMed  Google Scholar 

  19. Rahman T, Hosen I, Islam MT, Shekhar HU (2012) Oxidative stress and human health. Adv Biosci Biotechnol 3(07):997

    Article  CAS  Google Scholar 

  20. Kato T, Iwamoto K, Kakiuchi C, Kuratomi G, Okazaki Y (2005) Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Mol Psychiatry 10(7):622–630. https://doi.org/10.1038/sj.mp.4001662

    Article  CAS  PubMed  Google Scholar 

  21. Brown NC, Andreazza AC, Young LT (2014) An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res 218(1):61–68

    Article  CAS  PubMed  Google Scholar 

  22. Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP (2008) Mitochondrial involvement in psychiatric disorders. Ann Med 40(4):281–295. https://doi.org/10.1080/07853890801923753

    Article  CAS  PubMed  Google Scholar 

  23. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro) degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35(3):676–692

    Article  CAS  PubMed  Google Scholar 

  24. Kim YK, Jung HG, Myint AM, Kim H, Park SH (2007) Imbalance between pro-inflammatory and anti-inflammatory cytokines in bipolar disorder. J Affect Disord 104(1–3):91–95. https://doi.org/10.1016/j.jad.2007.02.018

    Article  CAS  PubMed  Google Scholar 

  25. McNamara RK, Jandacek R, Rider T, Tso P (2011) Chronic risperidone normalizes elevated pro-inflammatory cytokine and C-reactive protein production in omega-3 fatty acid deficient rats. Eur J Pharmacol 652(1–3):152–156. https://doi.org/10.1016/j.ejphar.2010.11.010

    Article  CAS  PubMed  Google Scholar 

  26. Berger I, Segal I, Shmueli D, Saada A (2010) The effect of antiepileptic drugs on mitochondrial activity: a pilot study. J Child Neurol 25(5):541–545. https://doi.org/10.1177/0883073809352888

    Article  PubMed  Google Scholar 

  27. Grosso G, Pajak A, Marventano S, Castellano S, Galvano F, Bucolo C, Drago F, Caraci F (2014) Role of omega-3 fatty acids in the treatment of depressive disorders: a comprehensive meta-analysis of randomized clinical trials. PLoS ONE 9(5):e96905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Berk M, Copolov DL, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Bush AI (2008) N-acetyl cysteine for depressive symptoms in bipolar disorder—a double-blind randomized placebo-controlled trial. Biol Psychiatry 64(6):468–475

    Article  CAS  PubMed  Google Scholar 

  29. Forester BP, Harper DG, Georgakas J, Ravichandran C, Madurai N, Cohen BM (2015) Antidepressant effects of open label treatment with Coenzyme Q10 in geriatric bipolar depression. J Clin Psychopharmacol 35(3):338

    Article  PubMed  PubMed Central  Google Scholar 

  30. Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20(6):591–598

    Article  CAS  PubMed  Google Scholar 

  31. Pandya CD, Howell KR, Pillai A (2013) Antioxidants as potential therapeutics for neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 46:214–223

    Article  CAS  PubMed  Google Scholar 

  32. Elbaky NAA, El-Orabi NF, Fadda LM, Abd-Elkader OH, Ali HM (2018) Role of N-acetylcysteine and coenzyme Q10 in the amelioration of myocardial energy expenditure and oxidative stress, induced by carbon tetrachloride intoxication in rats. Dose-Response 16(3):1559325818790158. https://doi.org/10.1177/1559325818790158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Sanoobar M, Eghtesadi S, Azimi A, Khalili M, Jazayeri S, Reza Gohari M (2013) Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with relapsing-remitting multiple sclerosis. Int J Neurosci 123(11):776–782. https://doi.org/10.3109/00207454.2013.801844

    Article  CAS  PubMed  Google Scholar 

  34. Mehrpooya M, Yasrebifar F, Haghighi M, Mohammadi Y, Jahangard L (2018) Evaluating the effect of coenzyme Q10 augmentation on treatment of bipolar depression: a double-blind controlled clinical trial. J Clin Psychopharmacol 38(5):460–466. https://doi.org/10.1097/jcp.0000000000000938

    Article  CAS  PubMed  Google Scholar 

  35. Association AP (2013) Diagnostic and statistical manual of mental disorders. BMC Med 17:133–137

    Google Scholar 

  36. Ahmadpanah M, Sheikhbabaei M, Haghighi M, Roham F, Jahangard L, Akhondi A, Sadeghi Bahmani D, Bajoghli H, Holsboer-Trachsler E, Brand S (2016) Validity and test-retest reliability of the Persian version of the Montgomery-Asberg depression rating scale. Neuropsychiatr Dis Treat 12:603–607. https://doi.org/10.2147/ndt.s103869

    Article  PubMed  PubMed Central  Google Scholar 

  37. Benzie IF, Szeto YT (1999) Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J Agric Food Chem 47(2):633–636

    Article  CAS  PubMed  Google Scholar 

  38. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  CAS  PubMed  Google Scholar 

  39. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  PubMed  Google Scholar 

  40. McNamara RK, Lotrich FE (2012) Elevated immune-inflammatory signaling in mood disorders: a new therapeutic target? Expert Rev Neurother 12(9):1143–1161. https://doi.org/10.1586/ern.12.98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Doganavsargil-Baysal O, Cinemre B, Aksoy UM, Akbas H, Metin O, Fettahoglu C, Gokmen Z, Davran F (2013) Levels of TNF-alpha, soluble TNF receptors (sTNFR1, sTNFR2), and cognition in bipolar disorder. Hum Psychopharmacol 28(2):160–167. https://doi.org/10.1002/hup.2301

    Article  CAS  PubMed  Google Scholar 

  42. Brietzke E, Stertz L, Fernandes BS, Kauer-Sant’anna M, Mascarenhas M, Escosteguy Vargas A, Chies JA, Kapczinski F (2009) Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder. J Affect Disord 116(3):214–217. https://doi.org/10.1016/j.jad.2008.12.001

    Article  CAS  PubMed  Google Scholar 

  43. Cunha AB, Andreazza AC, Gomes FA, Frey BN, da Silveira LE, Goncalves CA, Kapczinski F (2008) Investigation of serum high-sensitive C-reactive protein levels across all mood states in bipolar disorder. Eur Arch Psychiatry Clin Neurosci 258(5):300–304. https://doi.org/10.1007/s00406-007-0797-0

    Article  PubMed  Google Scholar 

  44. Lindqvist D, Janelidze S, Hagell P, Erhardt S, Samuelsson M, Minthon L, Hansson O, Bjorkqvist M, Traskman-Bendz L, Brundin L (2009) Interleukin-6 is elevated in the cerebrospinal fluid of suicide attempters and related to symptom severity. Biol Psychiat 66(3):287–292. https://doi.org/10.1016/j.biopsych.2009.01.030

    Article  CAS  PubMed  Google Scholar 

  45. Castaño-Ramírez OM, Sepúlveda-Arias JC, Duica K, Zuluaga AMD, Vargas C, López-Jaramillo C (2018) Inflammatory markers in the staging of bipolar disorder: a systematic review of the literature. Revista Colombiana de Psiquiatría (English ed) 47(2):119–128

    Google Scholar 

  46. Kunz M, Cereser KM, Goi PD, Fries GR, Teixeira AL, Fernandes BS, Belmonte-de-Abreu PS, Kauer-Sant’Anna M, Kapczinski F, Gama CS (2011) Serum levels of IL-6, IL-10 and TNF-alpha in patients with bipolar disorder and schizophrenia: differences in pro- and anti-inflammatory balance. Revista brasileira de psiquiatria (Sao Paulo, Brazil: 1999) 33(3):268–274

    Google Scholar 

  47. Franchini L, Zanardi R, Smeraldi E, Gasperini M (1999) Early onset of lithium prophylaxis as a predictor of good long-term outcome. Eur Arch Psychiatry Clin Neurosci 249(5):227–230

    Article  CAS  PubMed  Google Scholar 

  48. Chatterjee S (2016) Oxidative stress, inflammation, and disease. Oxidative Stress and Biomaterials. Elsevier, Amsterdam, pp 35–58

    Chapter  Google Scholar 

  49. Polter A, Beurel E, Yang S, Garner R, Song L, Miller CA, Sweatt JD, McMahon L, Bartolucci AA, Li X, Jope RS (2010) Deficiency in the inhibitory serine-phosphorylation of glycogen synthase kinase-3 increases sensitivity to mood disturbances. Neuropsychopharmacology 35(8):1761–1774. https://doi.org/10.1038/npp.2010.43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nery FG, Monkul ES, Hatch JP, Fonseca M, Zunta-Soares GB, Frey BN, Bowden CL, Soares JC (2008) Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Hum Psychopharmacol 23(2):87–94. https://doi.org/10.1002/hup.912

    Article  CAS  PubMed  Google Scholar 

  51. Stolk P, Souverein PC, Wilting I, Leufkens HG, Klein DF, Rapoport SI, Heerdink ER (2010) Is aspirin useful in patients on lithium? A pharmacoepidemiological study related to bipolar disorder. Prostaglandins Leukot Essent Fatty Acids 82(1):9–14. https://doi.org/10.1016/j.plefa.2009.10.007

    Article  CAS  PubMed  Google Scholar 

  52. Sarris J, Mischoulon D, Schweitzer I (2011) Adjunctive nutraceuticals with standard pharmacotherapies in bipolar disorder: a systematic review of clinical trials. Bipolar Disord 13(5–6):454–465. https://doi.org/10.1111/j.1399-5618.2011.00945.x

    Article  CAS  PubMed  Google Scholar 

  53. Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Doring F (2008) Functions of coenzyme Q10 in inflammation and gene expression. BioFactors (Oxford, England) 32(1–4):179–183

    Article  CAS  Google Scholar 

  54. Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP, Neergheen V, Aiken CE, Martin-Gronert MS, McConnell JM, Ozanne SE (2015) Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth. Am J Clin Nutr 103(2):579–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Wang XL, Rainwater DL, Mahaney MC, Stocker R (2004) Cosupplementation with vitamin E and coenzyme Q10 reduces circulating markers of inflammation in baboons. Am J Clin Nutr 80(3):649–655

    Article  PubMed  Google Scholar 

  56. Fan L, Feng Y, Chen G-C, Qin L-Q, Fu C-l, Chen L-H (2017) Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 119:128–136

    Article  CAS  PubMed  Google Scholar 

  57. Stocker R, Bowry VW, Frei B (1991) Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does alpha-tocopherol. Proc Natl Acad Sci USA 88(5):1646–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Landi L, Cabrini L, Fiorentini D, Stefanelli C, Pedulli GF (1992) The antioxidant activity of ubiquinol-3 in homogeneous solution and in liposomes. Chem Phys Lipid 61(2):121–130

    Article  CAS  Google Scholar 

  59. Kagan V, Serbinova E, Packer L (1990) Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling. Biochem Biophys Res Commun 169(3):851–857

    Article  CAS  PubMed  Google Scholar 

  60. Rivara MB, Yeung CK, Robinson-Cohen C, Phillips BR, Ruzinski J, Rock D, Linke L, Shen DD, Ikizler TA, Himmelfarb J (2017) Effect of coenzyme Q10 on biomarkers of oxidative stress and cardiac function in hemodialysis patients: the CoQ10 biomarker trial. Am J Kidney Dis 69(3):389–399. https://doi.org/10.1053/j.ajkd.2016.08.041

    Article  CAS  PubMed  Google Scholar 

  61. Sakata T, Furuya R, Shimazu T, Odamaki M, Ohkawa S, Kumagai H (2008) Coenzyme Q10 administration suppresses both oxidative and antioxidative markers in hemodialysis patients. Blood Purif 26(4):371–378. https://doi.org/10.1159/000135605

    Article  CAS  PubMed  Google Scholar 

  62. Lee B-J, Tseng Y-F, Yen C-H, Lin P-T (2013) Effects of coenzyme Q10 supplementation (300 mg/day) on antioxidation and anti-inflammation in coronary artery disease patients during statins therapy: a randomized, placebo-controlled trial. Nutr J 12(1):142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Tiano L, Belardinelli R, Carnevali P, Principi F, Seddaiu G, Littarru GP (2007) Effect of coenzyme Q10 administration on endothelial function and extracellular superoxide dismutase in patients with ischaemic heart disease: a double-blind, randomized controlled study. Eur Heart J 28(18):2249–2255

    Article  CAS  PubMed  Google Scholar 

  64. Abou-Raya A, Abou-Raya S, Helmii M (2014) THU0305 effect of oral coenzyme Q10 supplementation on clinical symptoms and oxidative stress in fibromyalgia patients: a randomized trial. Ann Rheum Dis 73(Suppl 2):288–289. https://doi.org/10.1136/annrheumdis-2014-eular.2611

    Article  Google Scholar 

  65. Jorat MV, Tabrizi R, Kolahdooz F, Akbari M, Salami M, Heydari ST, Asemi Z (2019) The effects of coenzyme Q10 supplementation on biomarkers of inflammation and oxidative stress in among coronary artery disease: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology 27(2):233–248

    Article  CAS  PubMed  Google Scholar 

  66. Lee BJ, Lin YC, Huang YC, Ko YW, Hsia S, Lin PT (2012) The relationship between coenzyme Q10, oxidative stress, and antioxidant enzymes activities and coronary artery disease. Sci World J 2012:792756. https://doi.org/10.1100/2012/792756

    Article  CAS  Google Scholar 

  67. Kedziora-Kornatowska K, Czuczejko J, Motyl J, Szewczyk-Golec K, Kozakiewicz M, Pawluk H, Kedziora J, Blaszczak R, Banach M, Rysz J (2010) Effects of coenzyme Q10 supplementation on activities of selected antioxidative enzymes and lipid peroxidation in hypertensive patients treated with indapamide. A pilot study. Arch Med Sci AMS 6(4):513–518. https://doi.org/10.5114/aoms.2010.14461

    Article  CAS  PubMed  Google Scholar 

  68. Yang L, Calingasan NY, Wille EJ, Cormier K, Smith K, Ferrante RJ, Beal MF (2009) Combination therapy with coenzyme Q10 and creatine produces additive neuroprotective effects in models of Parkinson’s and Huntington’s diseases. J Neurochem 109(5):1427–1439. https://doi.org/10.1111/j.1471-4159.2009.06074.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wadsworth TL, Bishop JA, Pappu AS, Woltjer RL, Quinn JF (2008) Evaluation of coenzyme Q as an antioxidant strategy for Alzheimer’s disease. J Alzheimer’s Dis 14(2):225–234

    Article  CAS  Google Scholar 

  70. Gvozdjakova A, Kucharska J, Ostatnikova D, Babinska K, Nakladal D, Crane FL (2014) Ubiquinol improves symptoms in children with autism. Oxid Med Cell Longev 2014:798957. https://doi.org/10.1155/2014/798957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maes M, Mihaylova I, Kubera M, Uytterhoeven M, Vrydags N, Bosmans E (2009) Lower plasma Coenzyme Q 10 in depression: a marker for treatment resistance and chronic fatigue in depression and a risk factor to cardiovascular disorder in that illness. Neuroendocrinol Lett 30(4):462–469

    CAS  PubMed  Google Scholar 

  72. Forester BP, Zuo CS, Ravichandran C, Harper DG, Du F, Kim S, Cohen BM, Renshaw PF (2012) Coenzyme Q10 effects on creatine kinase activity and mood in geriatric bipolar depression. J Geriatr Psychiatry Neurol 25(1):43–50. https://doi.org/10.1177/0891988712436688

    Article  PubMed  PubMed Central  Google Scholar 

  73. Aboul-Fotouh S (2013) Coenzyme Q10 displays antidepressant-like activity with reduction of hippocampal oxidative/nitrosative DNA damage in chronically stressed rats. Pharmacol Biochem Behav 104:105–112. https://doi.org/10.1016/j.pbb.2012.12.027

    Article  CAS  PubMed  Google Scholar 

  74. Kagal UA, Angadi NB (2017) Effect of coenzyme Q10 on depression paradigms in male Wistar rats and Swiss albino mice. Natl J Physiol Pharm Pharmacol 7(8):802

    CAS  Google Scholar 

  75. Ferrante KL, Shefner J, Zhang H, Betensky R, O’Brien M, Yu H, Fantasia M, Taft J, Beal MF, Traynor B, Newhall K, Donofrio P, Caress J, Ashburn C, Freiberg B, O’Neill C, Paladenech C, Walker T, Pestronk A, Abrams B, Florence J, Renna R, Schierbecker J, Malkus B, Cudkowicz M (2005) Tolerance of high-dose (3,000 mg/day) coenzyme Q10 in ALS. Neurology 65(11):1834–1836. https://doi.org/10.1212/01.wnl.0000187070.35365.d7

    Article  CAS  PubMed  Google Scholar 

  76. Bonakdar RA, Guarneri E (2005) Coenzyme Q10. Am Fam Physician 72(6):1065–1070

    PubMed  Google Scholar 

Download references

Acknowledgement

This study was supported by Vice-Chancellor of Research and Technology of Hamadan University of Medical Sciences, Hamadan, Iran (No: 9605032798). The authors thank all patients for helping and participating in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Mehrpooya.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahangard, L., Yasrebifar, F., Haghighi, M. et al. Influence of adjuvant Coenzyme Q10 on inflammatory and oxidative stress biomarkers in patients with bipolar disorders during the depressive episode. Mol Biol Rep 46, 5333–5343 (2019). https://doi.org/10.1007/s11033-019-04989-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04989-z

Keywords

Navigation