Skip to main content
Log in

Potential role of serum fetuin-A in relation with pro-inflammatory, chemokine and adhesion molecules in diabetic kidney disease: a case–control study

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Inflammatory cytokine, adipokine and adhesion molecules are known to play a key role in pathogenesis of diabetic kidney disease (DKD). In this study, our aim was to investigate the role of fetuin-A in relation with pro-inflammatory cytokines (IL-6, IL-18), adipokines (adiponectin, leptin), chemokine (MCP-1), and adhesion molecules (ICAM-1, VCAM-1) in control and DKD subjects. We recruited a total of 224 type 2 diabetic (T2D) subjects. The control subjects were T2D with a normal albumin excrete (albumin-to-creatinine ratio—ACR ≤ 30 mg/g creatinine) and estimated glomerular filtration rate (eGFR) ≥ 60 (ml/min/1.73 m2), while cases were T2D subjects with albumin excrete (ACR ≥ 30 mg/g creatinine) and eGFR ≤ 60 (ml/min/1.73 m2). FBS, HbA1c, lipid profile (TC, LDL, HDL, triglyceride), ALT, AST, GGT, serum creatinine, BMI, blood pressure was evaluated in all the study subjects. Randox evidence biochip analyzer was used for measuring inflammatory cytokines, adipokines, and adhesion molecules by chemiluminescent assay. Serum fetuin-A and IL-18 were measured by ELISA kits. Serum fetuin-A levels were significantly decreased in DKD cases compare to control group [456.8 (299.2–649.0) µg/ml versus 670.6 (573.0–726.1) µg/ml; p < 0.001)]. Serum fetuin-A levels correlates significantly with IL-6, IL-18, TNF-α, PAI-1, leptin, resistin and ACR (p < 0.001). This study concludes that serum fetuin-A and pro-inflammatory markers (IL-18, IL-6, IL-1α and TNF-α) might play an important role in the pathophysiology and inflammatory process of DKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. International Diabetes Federation (IDF) (2017) http://www.diabetesatlas.org/resources/2017-atlas.html. Accessed 28 Jan 2018

  2. Wada J, Makino H (2013) Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 124:139–152. https://doi.org/10.1042/cs20120198

    Article  CAS  Google Scholar 

  3. Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7:327–340. https://doi.org/10.1038/nrneph.2011.51

    Article  CAS  PubMed  Google Scholar 

  4. Choudhary N, Ahlawat RS (2008) Interleukin-6 and C-reactive protein in pathogenesis of diabetic nephropathy: new evidence linking inflammation, glycemic control, and microalbuminuria. Iran J Kidney Dis 2:72–79

    PubMed  Google Scholar 

  5. Nakamura A, Shikata K, Hiramatsu M, Nakatou T, Kitamura T, Wada J, Itoshima T, Makino H (2005) Serum interleukin-18 levels are associated with nephropathy and atherosclerosis in Japanese patients with type 2 diabetes. Diabetes Care 28:2890–2895

    Article  CAS  PubMed  Google Scholar 

  6. Clausen P, Jacobsen P, Rossing K, Jensen JS, Parving HH, Feldt-Rasmussen B (2000) Plasma concentrations of VCAM-1 and ICAM-1 are elevated in patients with Type 1 diabetes mellitus with microalbuminuria and overt nephropathy. Diabetes Med 17:644–649

    Article  CAS  Google Scholar 

  7. Guler S, Cakir B, Demirbas B, Yonem A, Odabasi E, Onde U, Aykut O, Gursoy G (2002) Plasma soluble intercellular adhesion molecule 1 levels are increased in type 2 diabetic patients with nephropathy. Horm Res 58:67–70. https://doi.org/10.1159/000064664

    Article  PubMed  Google Scholar 

  8. Binkert C, Demetriou M, Sukhu B, Szweras M, Tenenbaum HC, Dennis JW (1999) Regulation of osteogenesis by fetuin. J Biol Chem 274:28514–28520

    Article  CAS  PubMed  Google Scholar 

  9. Ju H, Zhou Z, Sun M, Ji Y, Zhang J, Chen S, Ji J (2014) Association between serum fetuin A and diabetic nephropathy in patients with type 2 diabetes. Chin J Endocrinol Metab 30(7):592–594

    CAS  Google Scholar 

  10. Al-Rubeaan K, Siddiqui K, Alghonaim M, Youssef AM, AlNaqeb D (2018) The Saudi Diabetic Kidney Disease study (Saudi-DKD): clinical characteristics and biochemical parameters. Ann Saudi Med 38:46–56. https://doi.org/10.5144/0256-4947.2018.03.01.1010

    Article  PubMed  PubMed Central  Google Scholar 

  11. American Diabetes Association (2014) Standards of medical care in diabetes—2014. Diabetes Care 37(Suppl 1):S14–S80. https://doi.org/10.2337/dc14-S014

    Article  Google Scholar 

  12. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2013) KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 3:1–150

    Article  Google Scholar 

  13. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF III, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  14. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP (2007) Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ 335:806–808. https://doi.org/10.1136/bmj.39335.541782.AD

    Article  Google Scholar 

  15. Caglar K, Yilmaz MI, Saglam M, Cakir E, Kilic S, Sonmez A, Eyileten T, Yenicesu M, Oguz Y, Tasar M, Vural A, Ikizler TA, Stenvinkel P, Lindholm B (2008) Serum fetuin-a concentration and endothelial dysfunction in chronic kidney disease. Nephron Clin Pract 108:c233–40. https://doi.org/10.1159/000120209

    Article  CAS  PubMed  Google Scholar 

  16. Yilmaz MI, Saglam M, Qureshi AR, Carrero JJ, Caglar K, Eyileten T, Sonmez A, Cakir E, Oguz Y, Vural A, Yenicesu M, Stenvinkel P, Lindholm B, Axelsson J (2008) Endothelial dysfunction in type-2 diabetics with early diabetic nephropathy is associated with low circulating adiponectin. Nephrol Dial Transplant 23:1621–1627. https://doi.org/10.1093/ndt/gfm828

    Article  CAS  PubMed  Google Scholar 

  17. Lebreton JP, Joisel F, Raoult JP, Lannuzel B, Rogez JP, Humbert G (1979) Serum concentration of human alpha 2 HS glycoprotein during the inflammatory process: evidence that alpha 2 HS glycoprotein is a negative acute-phase reactant. J Clin Invest 64:1118–1129. https://doi.org/10.1172/jci109551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cozzolino M, Galassi A, Biondi ML, Turri O, Papagni S, Mongelli N, Civita L, Gallieni M, Brancaccio D (2006) Serum fetuin-A levels link inflammation and cardiovascular calcification in hemodialysis patients. Am J Nephrol 26:423–429

    Article  CAS  PubMed  Google Scholar 

  19. Gangneux C, Daveau M, Hiron M, Derambure C, Papaconstantinou J, Salier JP (2003) The inflammation-induced down-regulation of plasma Fetuin-A (α2HS-Glycoprotein) in liver results from the loss of interaction between long C/EBP isoforms at two neighbouring binding sites. Nucleic Acids Res 31:5957–5970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wegner M, Araszkiewicz A, Piorunska-Stolzmann M, Wierusz-Wysocka B, Zozulinska-Ziolkiewicz D (2013) Association between IL-6 concentration and diabetes-related variables in DM1 patients with and without microvascular complications. Inflammation 36:723–728. https://doi.org/10.1007/s10753-013-9598-y

    Article  CAS  PubMed  Google Scholar 

  21. Suzuki D, Miyazaki M, Naka R, Koji T, Yagame M, Jinde K, Endoh M, Nomoto Y, Sakai H (1995) In situ hybridization of interleukin 6 in diabetic nephropathy. Diabetes 44:1233–1238

    Article  CAS  PubMed  Google Scholar 

  22. Navarro JF, Milena FJ, Mora C, Leon C, Garcia J (2006) Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am J Nephrol 26:562–570. https://doi.org/10.1159/000098004

    Article  CAS  PubMed  Google Scholar 

  23. Wong CK, Ho AW, Tong PC, Yeung CY, Kong AP, Lun SW, Chan JC, Lam CW (2007) Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin Exp Immunol 149:123–131. https://doi.org/10.1111/j.1365-2249.2007.03389.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fujita T, Ogihara N, Kamura Y, Satomura A, Fuke Y, Shimizu C, Wada Y, Matsumoto K (2012) Interleukin-18 contributes more closely to the progression of diabetic nephropathy than other diabetic complications. Acta Diabetol 49:111–117. https://doi.org/10.1007/s00592-010-0178-4

    Article  CAS  PubMed  Google Scholar 

  25. Miyauchi K, Takiyama Y, Honjyo J, Tateno M, Haneda M (2009) Upregulated IL-18 expression in type 2 diabetic subjects with nephropathy: TGF-beta1 enhanced IL-18 expression in human renal proximal tubular epithelial cells. Diabetes Res Clin Pract 83:190–199. https://doi.org/10.1016/j.diabres.2008.11.018

    Article  CAS  PubMed  Google Scholar 

  26. Marino E, Cardier JE (2003) Differential effect of IL-18 on endothelial cell apoptosis mediated by TNF-alpha and Fas (CD95). Cytokine 22:142–148

    Article  CAS  PubMed  Google Scholar 

  27. Stuyt RJ, Netea MG, Geijtenbeek TB, Kullberg BJ, Dinarello CA, van der Meer JW (2003) Selective regulation of intercellular adhesion molecule-1 expression by interleukin-18 and interleukin-12 on human monocytes. Immunology 110:329–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moriwaki Y, Yamamoto T, Shibutani Y, Aoki E, Tsutsumi Z, Takahashi S, Okamura H, Koga M, Fukuchi M, Hada T (2003) Elevated levels of interleukin-18 and tumor necrosis factor-alpha in serum of patients with type 2 diabetes mellitus: relationship with diabetic nephropathy. Metabolism 52:605–608. https://doi.org/10.1053/meta.2003.50096

    Article  CAS  PubMed  Google Scholar 

  29. Mahmoud RA, el-Ezz SA, Hegazy AS (2004) Increased serum levels of interleukin-18 in patients with diabetic nephropathy. Ital J Biochem 53:73–81

    PubMed  Google Scholar 

  30. Amann B, Tinzmann R, Angelkort B (2003) ACE inhibitors improve diabetic nephropathy through suppression of renal MCP-1. Diabetes Care 26:2421–2425

    Article  CAS  PubMed  Google Scholar 

  31. Ye SD, Zheng M, Zhao LL, Qian Y, Yao XM, Ren A, Li SM, Jing CY (2009) Intensive insulin therapy decreases urinary MCP-1 and ICAM-1 excretions in incipient diabetic nephropathy. Eur J Clin Invest 39:980–985. https://doi.org/10.1111/j.1365-2362.2009.02203.x

    Article  CAS  PubMed  Google Scholar 

  32. Saito T, Saito O, Kawano T, Tamemoto H, Kusano E, Kawakami M, Ishikawa S-e (2007) Elevation of serum adiponectin and CD146 levels in diabetic nephropathy. Diabetes Res Clin Pract 78:85–92

    Article  CAS  PubMed  Google Scholar 

  33. D’Elia JA, Bayliss G, Gleason RE, Weinrauch LA (2016) Cardiovascular-renal complications and the possible role of plasminogen activator inhibitor: a review. Clin Kidney J 9:705–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Axelsson J, Bergsten A, Qureshi AR, Heimbürger O, Barany P, Lönnqvist F, Lindholm B, Nordfors L, Alvestrand A, Stenvinkel P (2006) Elevated resistin levels in chronic kidney disease are associated with decreased glomerular filtration rate and inflammation, but not with insulin resistance. Kidney Int 69:596–604

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Siddiqui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study has been carried out under compliance of ethical issues. The study was approved by the institutional Review Committee of College of Medicine, King Saud University Riyadh. We used the STROBE case–control checklist for writing our report.

Informed consent

Written informed consent was obtained from each subject.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, S.S., Joy, S.S., Al Farsi, Y. et al. Potential role of serum fetuin-A in relation with pro-inflammatory, chemokine and adhesion molecules in diabetic kidney disease: a case–control study. Mol Biol Rep 46, 1239–1246 (2019). https://doi.org/10.1007/s11033-019-04592-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04592-2

Keywords

Navigation