Skip to main content

Advertisement

Log in

Expression of long non-coding RNA CCHE1 in colorectal carcinoma: correlations with clinicopathological features and ERK/COX-2 pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is among the leading causes of cancer-related mortality worldwide. Compelling evidence suggests that long non-coding RNA (lncRNAs) can control carcinogenesis by regulating various aspects of cell biology. However, limited number of CRC-related lncRNAs has been well characterized. This study was undertaken to investigate the expression pattern of the novel lncRNA-CCHE1 in CRC patients and to examine its correlation with clinicopathological features, ERK/COX-2 pathway and some cell proliferation markers in order to gain biological insights on its role in CRC pathogenesis. Colon cancer specimens with their adjacent non-cancerous tissues were taken from 60 patients with primary CRC. LncRNA-CCHE1 relative expression was assessed using quantitative real-time RT-PCR. P-ERK ½ and cyclin D1 levels were estimated by ELISA. COX-2 and proliferating cell nuclear antigen (PCNA) expression were assessed immunohistochemically. lncRNA-CCHE1 expression was upregulated in CRC tissues compared to adjacent non-cancerous tissues, and was significantly associated with larger tumor size, less differentiated histology, advanced dukes’ stage, positive lymph node involvement and vascular invasion. It also showed a significant positive correlation with the expression of p-ERK1/2, COX-2 as well as cyclin D1and PCNA (as markers for cell proliferation). These findings signify that lncRNA-CCHE1 is a key oncogene possibly involved in CRC development and progression by modulating ERK/COX-2 pathway and cell proliferation activity. Our study also provides a rationale for potential use of lncRNA-CCHE1 as a novel prognostic marker, and opens the door for the development of lncRNA-CCHE1-directed therapeutic approaches for CRC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CRC:

Colorectal cancer

lncRNA-CCHE1:

Cervical carcinoma high-expressed lncRNA 1

HOTAIR:

Hox transcript antisense intergenic RNA

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

BANCR:

BRAF-activated non-protein coding RNA

HULC:

Highly upregulated in liver cancer

ERK1/2:

Extracellular signal regulated kinase1/2

COX-2:

Cyclooxygenase-2

PCNA:

Proliferating cell nuclear antigen

References

  1. Siegel RL et al (2017) Colorectal cancer statistics, 2017. CA Cancer J Clin 67(3):177–193

    Article  PubMed  Google Scholar 

  2. Tariq K, Ghias K (2016) Colorectal cancer carcinogenesis: a review of mechanisms. Cancer Biol Med 13(1):120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29(4):452–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kashi K et al (2016) Discovery and functional analysis of lncRNAs: methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta 1859(1):3–15

    Article  CAS  PubMed  Google Scholar 

  5. Xie X et al (2016) Long non-coding RNAs in colorectal cancer. Oncotarget 7(5):5226–5239

    Article  PubMed  Google Scholar 

  6. Ragusa M et al (2015) Non-coding landscapes of colorectal cancer. World J Gastroenterol 21(41):11709–11739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng H et al (2017) Long non-coding RNAs: new biomarkers for prognosis and diagnosis of colon cancer. Tumor Biol 39(6):1010428317706332

    Article  Google Scholar 

  8. Yang M et al (2015) Long noncoding RNA CCHE1 promotes cervical cancer cell proliferation via upregulating PCNA. Tumor Biol 36(10):7615–7622

    Article  CAS  Google Scholar 

  9. Liu B, Qu L, Yan S (2015) Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int 15(1):106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhattacharyya S et al (2016), Tenascin-C drives persistence of organ fibrosis. Nat Commun 7:11703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun Y et al (2015) Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct 35(6):600–604

    Article  CAS  Google Scholar 

  12. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140(15):3079–3093

    Article  CAS  PubMed  Google Scholar 

  13. Xu MD, Qi P, Du X (2014) Long non-coding RNAs in colorectal cancer: implications for pathogenesis and clinical application. Mod Pathol 27(10):1310–1320

    Article  CAS  PubMed  Google Scholar 

  14. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  CAS  Google Scholar 

  15. Zhan Y et al (2017) Increased expression of long non-coding RNA CCEPR is associated with poor prognosis and promotes tumorigenesis in urothelial bladder carcinoma. Oncotarget 8(27):44326–44334

    Article  PubMed  PubMed Central  Google Scholar 

  16. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 – ∆∆CT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  17. Broders AC (1925) The grading of carcinoma. Minn Med 8(726):1730–1925

    Google Scholar 

  18. Dukes CE (1949) The surgical pathology of rectal cancer. J Clin Pathol 2(2):95–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Remmele W, Stegner HE (1987) Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 8(3):138–140

    CAS  PubMed  Google Scholar 

  20. Sun XF et al (1996) Proliferating cell nuclear antigen (PCNA) in relation to ras, c-erbB-2,p53, clinico-pathological variables and prognosis in colorectal adenocarcinoma. Int J Cancer 69(1):5–8

    Article  CAS  PubMed  Google Scholar 

  21. Grady WM, Markowitz SD (2015) The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening. Dig Dis Sci 60(3):762–772

    Article  CAS  PubMed  Google Scholar 

  22. Peng W, Fan H (2016) Long noncoding RNA CCHE1 indicates a poor prognosis of hepatocellular carcinoma and promotes carcinogenesis via activation of the ERK/MAPK pathway. Biomed Pharmacother 83:450–455

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y et al (2017) Long non-coding RNA CCHE1 overexpression predicts a poor prognosis for cervical cancer. Eur Rev Med Pharmacol Sci 21(3):479–483

    CAS  PubMed  Google Scholar 

  24. Xu G et al (2018) LncRNA CCHE1 in the proliferation and apoptosis of gastric cancer cells. Eur Rev Med Pharmacol Sci 22(9):2631–2637

    CAS  PubMed  Google Scholar 

  25. Liao Y et al (2018) lncRNA CCHE1 increased proliferation, metastasis and invasion of non-small lung cancer cells and predicted poor survival in non-small lung cancer patients. Eur Rev Med Pharmacol Sci 22(6):1686–1692

    CAS  PubMed  Google Scholar 

  26. Scrima M et al (2017) Aberrant signaling through the HER2-ERK1/2 pathway is predictive of reduced disease-free and overall survival in early stage non-small cell lung cancer (NSCLC) patients. J Cancer 8(2):227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bai L et al (2015) ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol 32(3):57

    Article  CAS  PubMed  Google Scholar 

  28. Zhao L et al (2015) Benzidine induces epithelial-mesenchymal transition in human uroepithelial cells through ERK1/2 pathway. Biochem Biophys Res Commun 459(4):643–649

    Article  CAS  PubMed  Google Scholar 

  29. Ding G et al (2015) Over-expression of lipocalin 2 promotes cell migration and invasion through activating ERK signaling to increase SLUG expression in prostate cancer. Prostate 75(9):957–968

    Article  CAS  PubMed  Google Scholar 

  30. Elzagheid A et al (2013) High cyclooxygenase-2 expression is associated with advanced stages in colorectal cancer. Anticancer Res 33(8):3137–3143

    PubMed  Google Scholar 

  31. Wu QB, Sun GP (2015) Expression of COX-2 and HER-2 in colorectal cancer and their correlation. World J Gastroenterol 21(20):6206–6214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rizzo MT (2011) Cyclooxygenase-2 in oncogenesis. Clin Chim Acta 412(9–10):671–687

    Article  CAS  PubMed  Google Scholar 

  33. Barnum KJ, O’Connell MJ (2014) Cell cycle regulation by checkpoints. Cell Cycle Control 1170:29–40

    Google Scholar 

  34. Qie S, Diehl JA (2016) Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med 94(12):1313–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li Y et al (2014) Prognostic significance of cyclin D1 expression in colorectal cancer: a meta-analysis of observational studies. PLoS ONE 9(4):e94508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang HY et al (2014) HBx protein promotes oval cell proliferation by up-regulation of cyclin D1 via activation of the MEK/ERK and PI3K/Akt pathways. Int J Mol Sci 15(3):3507–3518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han DP et al (2012) Polo-like kinase 1 is overexpressed in colorectal cancer and participates in the migration and invasion of colorectal cancer cells. Med Sci Monit 18(6):Br237–B46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanaa H. Gaballah.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaballah, H.H., Gaber, R.A., Elrashidy, M.A. et al. Expression of long non-coding RNA CCHE1 in colorectal carcinoma: correlations with clinicopathological features and ERK/COX-2 pathway. Mol Biol Rep 46, 657–667 (2019). https://doi.org/10.1007/s11033-018-4521-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4521-0

Keywords

Navigation