Skip to main content
Log in

Production of eicosapentaenoic acid (EPA, 20:5n-3) in transgenic peanut (Arachis hypogaea L.) through the alternative Δ8-desaturase pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

An important alternative source of fish oil is its production by plants through metabolic engineering. To produce eicosapentaenoic acid (EPA, 20:5n-3) in peanut through the alternative Δ8-pathway, a plant expression vector containing five heterologous genes driven by the constitutive 35S promoter respectively, namely, 9-elongase (Isochrysis galbana), 8-desaturase (Euglena gracilis), 5-desaturase (Mortierella alpina), 15-desaturase (Arabidopsis thaliana) and 17-desaturase (Phytophthora infestans) were transferred into peanut through Agrobacterium-mediated transformation method. The gas chromatography results indicated that the average content of EPA in the leaves of the transgenic lines was 0.68%, and the highest accumulation of EPA in an individual line reached 0.84%. This finding indicates that it is feasible to synthesize EPA in peanut through metabolic engineering and lays the foundations for the production of very-long-chain polyunsaturated fatty acids (VLCPUFAs) in peanut seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

EPA:

Eicosapentaenoic acid

VLCPUFAs:

Very-long-chain polyunsaturated fatty acids

DHA:

Docosahexaenoic acid

LA:

Linoleic acid

ALA:

α-Linolenic acid

6-BA:

6-Benzyl aminopurine

NAA:

1-Naphthylacetic acid

MCS:

Multiple cloning site

CTAB:

Cetyltrimethyl ammonium bromide

Elo :

Elongase

Des :

Desaturase

GC:

Gas chromatography

FAMEs:

Fatty acid methyl esters

GC–MS:

Gas chromatograph–mass spectrometer

ETrA:

Eicosatrienoic acid

References

  1. Gill I, Valivety R (1997) Polyunsaturated fatty acids, part 1: occurrence, biological activities and applications. Trends Biotechnol 15:401–409

    Article  CAS  PubMed  Google Scholar 

  2. Lauritzen L, Hansen H, Jørgensen M, Michaelsen K (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res 40:1–94

    Article  CAS  PubMed  Google Scholar 

  3. Thies F, Garry JM, Yaqoob P, Rerkasem K, Williams J, Shearman CP, Gallagher PJ, Calder PC, Grimble RF (2003) Association of n-3 polyunsaturated fatty acids with stability of atherosclerotic plaques: a randomised controlled trial. Lancet 361:477–485

    Article  CAS  PubMed  Google Scholar 

  4. Abeywardena P (2011) Role of ω3 long chain polyunsaturated fatty acids in reducing cardio-metabolic risk factors. Endocr Metab Immune Disord Drug Targets 11:232–246

    Article  CAS  PubMed  Google Scholar 

  5. Sprecher H (2000) Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim Biophys Acta 1486:219–231

    Article  CAS  PubMed  Google Scholar 

  6. Pawlosky RJ, Hibbeln JR, Novotny JA, Salem N (2001) Physiological compartmental analysis of α-linolenic acid metabolism in adult humans. J Lipid Res 42:1257–1265

    CAS  PubMed  Google Scholar 

  7. Snyder CL, Yurchenko OP, Siloto RM, Chen X, Liu Q, Mietkiewska E, Weselake RJ (2009) Acyltransferase action in the modification of seed oil biosynthesis. New Biotechnol 26:11–16

    Article  CAS  Google Scholar 

  8. Yurchenko OP, Nykiforuk CL, Moloney MM, Ståhl U, Banaś A, Stymne S, Weselake RJ (2009) A 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus enhances acyl exchange between acyl-CoA and phosphatidylcholine. Plant Biotechnol J 7:602–610

    Article  CAS  PubMed  Google Scholar 

  9. Abbadi A, Domergue F, Bauer J, Napier J, Welti R, Zähringer U, Cirpus P, Heinz E (2004) Biosynthesis of very-long-chain polyunsaturated fatty acids in transgenic oilseeds: constraints on their accumulation. Plant Cell Online 16:2734–2748

    Article  CAS  Google Scholar 

  10. Kinney A, Cahoon E, Damude H, Hitz W, Liu ZB, Kolar C (2004) Production of very long chain polyunsaturated fatty acids in oilseed plants, Google Patents 2004

  11. Kinney A, Cahoon E, Damude H, Hitz W, Liu ZB, Kolar C (2011) Production of very long chain polyunsaturated fatty acids in oil seed plants, Google Patents 2011

  12. Wu G, Truksa M, Datla N, Vrinten P, Bauer J, Zank T, Cirpus P, Heinz E, Qiu X (2005) Stepwise engineering to produce high yields of very long-chain polyunsaturated fatty acids in plants. Nat Biotechnol 23:1013–1017

    Article  CAS  PubMed  Google Scholar 

  13. Cheng B, Wu G, Vrinten P, Falk K, Bauer J, Qiu X (2010) Towards the production of high levels of eicosapentaenoic acid in transgenic plants: the effects of different host species, genes and promoters. Transgenic Res 19:221–229

    Article  CAS  PubMed  Google Scholar 

  14. Petrie JR, Shrestha P, Mansour MP, Nichols PD, Liu Q, Singh SP (2010) Metabolic engineering of omega-3 long-chain polyunsaturated fatty acids in plants using an acyl-CoA ∆6-desaturase with ω3-preference from the marine microalga Micromonas pusilla. Metab Eng 12:233–240

    Article  CAS  PubMed  Google Scholar 

  15. Petrie JR, Shrestha P, Zhou XR, Mansour MP, Liu Q, Belide S, Nichols PD, Singh SP (2012) Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS ONE 7:e49165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruiz-Lopez N, Haslam RP, Napier JA, Sayanova O (2014) Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J 77:198–208

    Article  CAS  PubMed  Google Scholar 

  17. Qi B, Fraser T, Mugford S, Dobson G, Sayanova O, Butler J, Napier JA, Stobart AK, Lazarus CM (2004) Production of very long chain polyunsaturated omega-3 and omega-6 fatty acids in plants. Nat Biotechnol 22:739–745

    Article  CAS  PubMed  Google Scholar 

  18. Liu J, Ma Y, Sun Q, Wu X, Li X, Sun M, Li Y, Li X, Qi B (2014) Production of very long chain polyunsaturated fatty acids in cotton. Acta Agron Sin 40:86–92

    Article  CAS  Google Scholar 

  19. Ruiz-Lopez N, Haslam RP, Usher S, Napier JA, Sayanova O (2015) An alternative pathway for the effective production of the omega-3 long-chain polyunsaturates EPA and ETA in transgenic oilseeds. Plant Biotechnol J 13:1264–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Özcan M, Seven S (2003) Physıcal and chemıcal analysıs and fatty acıd composıtıon of peanut, peanut oıl and peanut butter from ÇOM and NC-7 cultıvars. Grasas Aceites 54:12–18

    Article  Google Scholar 

  21. Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  CAS  PubMed  Google Scholar 

  22. Klein TM, Wolf E, Wu R, Sanford J (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  23. Rohini V, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898

    Article  CAS  PubMed  Google Scholar 

  24. Bhatnagar-Mathur P, Devi MJ, Reddy DS, Lavanya M, Vadez V, Serraj R, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress-inducible expression of At DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082

    Article  CAS  PubMed  Google Scholar 

  25. Tiwari S, Mishra DK, Singh A, Singh P, Tuli R (2008) Expression of a synthetic crylEC gene for resistance against Spodoptera litura in transgenic peanut (Arachis hypogaea L.). Plant Cell Rep 27:1017–1025

    Article  CAS  PubMed  Google Scholar 

  26. Yang CY, Chen SY, Duan GC (2011) Transgenic peanut (Arachis hypogaea L.) expressing the urease subunit B gene of Helicobacter pylori. Curr Microbiol 63:387–391

    Article  CAS  PubMed  Google Scholar 

  27. Sun Q, Liu J, Li Y, Zhang Q, Shan S, Li X, Qi B (2013) Creation and validation of a widely applicable multiple gene transfer vector system for stable transformation in plant. Plant Mol Biol 83:391–404

    Article  CAS  PubMed  Google Scholar 

  28. Ye X, Al-Babili S, Klöti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303–305

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Yang W, Mu B, Li S, Li Y, Zhou X, Zhang C, Fan Y, Chen R (2018) Engineering of ‘Purple Embryo Maize’ with a multigene expression system derived from a bidirectional promoter and self-cleaving 2A peptides. Plant Biotechnol J 16:1107–1109

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhu Q, Yu S, Zeng D, Liu H, Wang H, Yang Z, Xie X, Shen R, Tan J, Li H, Zhao X, Zhang Q, Chen Y, Guo J, Chen L, Liu YG (2017) Development of ‘‘Purple Endosperm Rice’’ by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant 10:918–929

    Article  CAS  PubMed  Google Scholar 

  31. Pereira SL, Leonard AE, Mukerji P (2003) Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes. Prostaglandins Leukot Essent Fatty Acids 68:97–106

    Article  CAS  PubMed  Google Scholar 

  32. Sun Q, Liu J, Zhang Q, Qing X, Dobson G, Li X, Qi B (2013) Characterization of three novel desaturases involved in the delta-6 desaturation pathways for polyunsaturated fatty acid biosynthesis from Phytophthora infestans. Appl Microbiol Biotechnol 97:7689–7697

    Article  CAS  PubMed  Google Scholar 

  33. Haslam RP, Ruiz-Lopez N, Eastmond P, Moloney M, Sayanova O, Napier JA (2013) The modification of plant oil composition via metabolic engineering-better nutrition by design. Plant Biotechnol J 11:157–168

    Article  CAS  PubMed  Google Scholar 

  34. Chen Y, Meesapyodsuk D, Qiu X (2014) Transgenic production of omega-3 very long chain polyunsaturated fatty acids in plants: accomplishment and challenge. Biocatal Agric Biotechnol 3:38–43

    Article  Google Scholar 

  35. Petrie JR, Shrestha P, Belide S, Kennedy Y, Lester G, Liu Q, Divi UK, Mulder RJ, Mansour MP, Nichols PD (2014) Metabolic engineering Camelina sativa with fish oil-like levels of DHA. PLoS ONE 9:e85061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xia F, Li X, Li X, Zheng D, Sun Q, Liu J, Li Y, Hua J, Qi B (2016) Elevation of the yields of very long chain polyunsaturated fatty acids via minimal codon optimization of two key biosynthetic enzymes. PLoS ONE 11:e0158103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lu C, Napier JA, Clemente TE, Cahoon EB (2011) New frontiers in oilseed biotechnology: meeting the global demand for vegetable oils for food, feed, biofuel, and industrial applications. Curr Opin Biotechnol 22:252–259

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Shandong Province Peanut Seed Industry Project, the National Natural Science Foundation of China (31601336, 31271757) and the National Opening Project of State Key Laboratory of Crop Biology (2016KF09). The sequencing and assembly were performed by the Beijing Genomics Institute (BGI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzheng Li.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 KB)

Supplementary material 2 (JPG 925 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Qing, X., Yu, M. et al. Production of eicosapentaenoic acid (EPA, 20:5n-3) in transgenic peanut (Arachis hypogaea L.) through the alternative Δ8-desaturase pathway. Mol Biol Rep 46, 333–342 (2019). https://doi.org/10.1007/s11033-018-4476-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4476-1

Keywords

Navigation