Skip to main content
Log in

AGXT2 and DDAH-1 genetic variants are highly correlated with serum ADMA and SDMA levels and with incidence of coronary artery disease in Egyptians

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dimethylarginine aminodehydrolase (DDAH1) and alanine glyoxylate aminotransferase2 (AGXT2) are two enzymes that contribute in asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) metabolism. Hence they affect production and bioavailability of eNOS-derived nitric oxide (NO) and consequently healthy blood vessels. The major aims of the current study were to investigate the association of genetic variants of AGXT2 rs37369, AGXT2 rs16899974 and DDAH1 rs997251 SNPs with incidence of coronary artery disease (CAD) in Egyptians and to correlate these variants with the serum levels of ADMA and SDMA. The study included 150 subjects; 100 CAD patients and 50 healthy controls. Genotyping was performed by qPCR while the ADMA and SDMA concentrations were assayed by ELISA. Both serum ADMA and SDMA concentrations were significantly higher in CAD patients compared to controls (both p < 0.0001). Genotype distributions for all studied SNPs were significantly different between CAD patients and controls. Carriers of AGXT2 rs37369-T allele (CT + TT genotypes) and AGXT2 rs16899974-A allele (CA + AA genotypes) had 2.4- and 2.08-fold higher risk of having CAD than CC genotype in both SNPs (p = 0.0050 and 0.0192, respectively). DDAH1 rs997251 TC + CC genotypes were associated with 2.3-fold higher risk of CAD than TT genotype (p = 0.0063). Moreover, the AGXT2 rs37369 TT and AGXT2 rs16899974 AA genotypes were associated with the highest serum ADMA and SDMA while DDAH1 rs997251 CC genotype was associated with the highest ADMA. AGXT2 rs37369-T, AGXT2 rs16899974-A, and DDAH1 rs997251-C alleles represent independent risk factors for CAD in the Egyptians.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lluch P, Segarra G, Medina P (2015) Asymmetric dimethylarginine as a mediator of vascular dysfunction in cirrhosis. World J Gastroenterol 21:9466

    Article  CAS  Google Scholar 

  2. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87:315–424

    Article  CAS  Google Scholar 

  3. Tain Y-L, Huang L-T, Lin I-C, Lau Y-T, Lin C-Y (2010) Melatonin prevents hypertension and increased asymmetric dimethylarginine in young spontaneous hypertensive rats. J Pineal Res 49:390–398

    Article  CAS  Google Scholar 

  4. McDermott JR (1976) Studies on the catabolism of Ng-methylarginine, Ng, Ng-dimethylarginine and Ng, Ng-dimethylarginine in the rabbit. Biochem J 154:179–184

    Article  CAS  Google Scholar 

  5. Böger RH, Sydow K, Borlak J, Thum T, Lenzen H, Schubert B, Tsikas D, Bode-Böger SM (2000) LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells: involvement of S-adenosylmethionine-dependent methyltransferases. Circ Res 87:99–105

    Article  Google Scholar 

  6. Closs EI, Basha FZ, Habermeier A, Förstermann U (1997) Interference of L-arginine analogues with L-arginine transport mediated by the y+ carrier hCAT-2B. Nitric Oxide 1:65–73

    Article  CAS  Google Scholar 

  7. Valkonen V-P, Päivä H, Salonen JT, Lakka TA, Lehtimäki T, Laakso J, Laaksonen R (2001) Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet 358:2127–2128

    Article  CAS  Google Scholar 

  8. Böger RH, Zoccali C (2003) ADMA: a novel risk factor that explains excess cardiovascular event rate in patients with end-stage renal disease. Atheroscler Suppl 4:23–28

    Article  Google Scholar 

  9. Leong T, Zylberstein D, Graham I, Lissner L, Ward D, Fogarty J, Bengtsson C, Bjorkelund C, Thelle D (2008) Asymmetric dimethylarginine independently predicts fatal and nonfatal myocardial infarction and stroke in women: 24-year follow-up of the population study of women in Gothenburg. Arterioscler Thromb Vasc Biol 28:961–967

    Article  CAS  Google Scholar 

  10. Ogawa T, Kimoto M, Watanabe H, Sasaoka K (1987) Metabolism of NG, NG- and NG, N’G-dimethylarginine in rats. Arch Biochem Biophys 252:526–537

    Article  CAS  Google Scholar 

  11. MacAllister RJ, Rambausek MH, Vallance P, Williams D, Hoffmann KH, Ritz E (1996) Concentration of dimethyl-L-arginine in the plasma of patients with end-stage renal failure. Nephrol Dial Transplant 11:2449–2452

    Article  CAS  Google Scholar 

  12. Zoccali C, Benedetto FA, Maas R, Mallamaci F, Tripepi G, Malatino LS, Böger R, CREED Investigators (2002) Asymmetric dimethylarginine, C-reactive protein, and carotid intima-media thickness in end-stage renal disease. J Am Soc Nephrol 13:490–496

    Article  CAS  Google Scholar 

  13. Jones LC, Tran CTL, Leiper JM, Hingorani AD, Vallance P (2003) Common genetic variation in a basal promoter element alters DDAH2 expression in endothelial cells. Biochem Biophys Res Commun 310:836–843

    Article  CAS  Google Scholar 

  14. Valkonen V-P, Tuomainen T-P, Laaksonen R (2005) DDAH gene and cardiovascular risk. Vasc Med 10:S45–S48

    Article  Google Scholar 

  15. Suhre K, Wallaschofski H, Raffler J, Friedrich N, Haring R, Michael K, Wasner C, Krebs A, Kronenberg F, Chang D, Meisinger C, Wichmann H-E, Hoffmann W, Völzke H, Völker U, Teumer A, Biffar R, Kocher T, Felix SB, Illig T, Kroemer HK, Gieger C, Römisch-Margl W, Nauck M (2011) A genome-wide association study of metabolic traits in human urine. Nat Genet 43:565–569

    Article  CAS  Google Scholar 

  16. Kittel A, Müller F, König J, Mieth M, Sticht H, Zolk O, Kralj A, Heinrich MR, Fromm MF, Maas R (2014) Alanine-glyoxylate aminotransferase 2 (AGXT2) polymorphisms have considerable impact on methylarginine and β-aminoisobutyrate metabolism in healthy volunteers. PLoS ONE 9:e88544

    Article  Google Scholar 

  17. Gad MZ, Abdel Rahman MF, Hashad IM, Abdel-Maksoud SM, Farag NM, Abou-Aisha K (2012) Endothelial nitric oxide synthase (G894T) gene polymorphism in a random sample of the Egyptian population: comparison with myocardial infarction patients. Genet Test Mol Biomark 16:695–700

    Article  CAS  Google Scholar 

  18. Abu el Maaty MA, Hassanein SI, Sleem HM, Gad MZ (2015) Vitamin D receptor gene polymorphisms (TaqI and ApaI) in relation to 25-hydroxyvitamin D levels and coronary artery disease incidence. J Recept Signal Transduct 35:391–395

    Article  CAS  Google Scholar 

  19. Abu El Maaty MA, Hassanein SI, Sleem HM, Gad MZ (2013) Effect of polymorphisms in the NADSYN1/DHCR7 locus (rs12785878 and rs1790349) on plasma 25-hydroxyvitamin D levels and coronary artery disease incidence. J Nutrigenet Nutrigenomics 6:327–335

    Article  CAS  Google Scholar 

  20. Abu el Maaty MA, Hassanein SI, Gad MZ (2016) Genetic variation in vitamin D receptor gene (Fok1:rs2228570) is associated with risk of coronary artery disease. Biomarkers 21:68–72

    Article  CAS  Google Scholar 

  21. Rahman MFA, Hashad IM, Abou-Aisha K, Abdel-Maksoud SM, Gad MZ (2015) Addressing the link between paraoxonase-1 gene variants and the incidence of early onset myocardial infarction. Arch Med Sci 11:513–520

    Article  Google Scholar 

  22. Hassanein SI, Abu el Maaty MA, Sleem HM, Gad MZ (2014) Triangular relationship between single nucleotide polymorphisms in the CYP2R1 gene (rs10741657 and rs12794714), 25-hydroxyvitamin d levels, and coronary artery disease incidence. Biomarkers 19:488–492

    Article  CAS  Google Scholar 

  23. Hashad IM, Abdel Rahman MF, Abdel-Maksoud SM, Amr KS, Effat LK, Shaban GM, Gad MZ (2014) C242T polymorphism of NADPH oxidase p22phox gene reduces the risk of coronary artery disease in a random sample of Egyptian population. Mol Biol Rep 41:2281–2286

    Article  CAS  Google Scholar 

  24. Gaunt TR, Rodríguez S, Day IN (2007) Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool “CubeX”. BMC Bioinform 8:428

    Article  Google Scholar 

  25. Seppala I, Kleber ME, Lyytikainen L-P, Hernesniemi JA, Makela K-M, Oksala N, Laaksonen R, Pilz S, Tomaschitz A, Silbernagel G, Boehm BO, Grammer TB, Koskinen T, Juonala M, Hutri-Kahonen N, Alfthan G, Viikari JSA, Kahonen M, Raitakari OT, Marz W, Meinitzer A, Lehtimaki T (2014) Genome-wide association study on dimethylarginines reveals novel AGXT2 variants associated with heart rate variability but not with overall mortality. Eur Heart J 35:524–531

    Article  Google Scholar 

  26. Martens-Lobenhoffer J, Westphal S, Awiszus F, Bode-Böger SM, Luley C (2005) Determination of asymmetric dimethylarginine: liquid chromatography-mass spectrometry or ELISA? Clin Chem 51:2188–2189

    Article  CAS  Google Scholar 

  27. Schulze F, Maas R, Freese R, Schwedhelm E, Silberhorn E, Boger RH (2005) Determination of a reference value for NG, NG-dimethyl-L-arginine in 500 subjects. Eur J Clin Invest 35:622–626

    Article  CAS  Google Scholar 

  28. Atzler D, Schwedhelm E, Nauck M, Ittermann T, Böger RH, Friedrich N (2014) Serum reference intervals of homoarginine, ADMA, and SDMA in the Study of Health in Pomerania. Clin Chem Lab Med 52:1835–1842

    Article  CAS  Google Scholar 

  29. Sobczak A, Goniewicz ML, Szoltysek-Boldys I (2009) ADMA and SDMA levels in healthy men exposed to tobacco smoke. Atherosclerosis 205:357–359

    Article  CAS  Google Scholar 

  30. Gad MZ, Hassanein SI, Abdel-Maksoud SM, Shaban GM, Abou-Aisha K, Elgabarty HA (2010) Assessment of serum levels of asymmetric dimethylarginine, symmetric dimethylarginine and L-arginine in coronary artery disease. Biomarkers 15:746–752

    Article  CAS  Google Scholar 

  31. Boelaert J, Schepers E, Glorieux G, Eloot S, Vanholder R, Lynen F (2016) Determination of asymmetric and symmetric dimethylarginine in serum from patients with chronic kidney disease: UPLC-MS/MS versus ELISA. Toxins (Basel) 8:149

    Article  Google Scholar 

  32. Sitia S, Tomasoni L, Atzeni F, Ambrosio G, Cordiano C, Catapano A, Tramontana S, Perticone F, Naccarato P, Camici P, Picano E, Cortigiani L, Bevilacqua M, Milazzo L, Cusi D, Barlassina C, Sarzi-Puttini P, Turiel M (2010) From endothelial dysfunction to atherosclerosis. Autoimmun Rev 9:830–834

    Article  CAS  Google Scholar 

  33. Lu T, Ding Y-A, Lin S-J, Lee W-S, Tai H-C (2003) Plasma levels of asymmetrical dimethylarginine and adverse cardiovascular events after percutaneous coronary intervention. Eur Heart J 24:1912–1919

    Article  CAS  Google Scholar 

  34. Leong T, Zylberstein D, Graham I, Lissner L, Ward D, Fogarty J, Bengtsson C, Bjorkelund C, Thelle D, Swedish-Irish-Norwegian Collaboration (2008) Asymmetric dimethylarginine independently predicts fatal and nonfatal myocardial infarction and stroke in women: 24-year follow-up of the population study of women in Gothenburg. Arterioscler Thromb Vasc Biol 28:961–967

    Article  CAS  Google Scholar 

  35. Hu XL, Li MP, Song PY, Tang J, Chen XP (2017) AGXT2: An unnegligible aminotransferase in cardiovascular and urinary systems. J Mol Cell Cardiol 113:33–38

    Article  CAS  Google Scholar 

  36. Notsu Y, Yano S, Shibata H, Nagai A, Nabika T (2015) Plasma arginine/ADMA ratio as a sensitive risk marker for atherosclerosis: Shimane CoHRE study. Atherosclerosis 239:61–66

    Article  CAS  Google Scholar 

  37. Usui M, Matsuoka H, Miyazaki H, Ueda S, Okuda S, Imaizumi T (1998) Increased endogenous nitric oxide synthase inhibitor in patients with congestive heart failure. Life Sci 62:2425–2430

    Article  CAS  Google Scholar 

  38. Hsu C-P, Lin S-J, Chung M-Y, Lu T-M (2012) Asymmetric dimethylarginine predicts clinical outcomes in ischemic chronic heart failure. Atherosclerosis 225:504–510

    Article  CAS  Google Scholar 

  39. Khalifa NM, Gad MZ, Hataba AA, Mahran LG (2012) Changes in ADMA and TAFI levels after stenting in coronary artery disease patients. Mol Med Rep 6:855–859

    Article  CAS  Google Scholar 

  40. Bode-Böger SM, Scalera F, Kielstein JT, Martens-Lobenhoffer J, Breithardt G, Fobker M, Reinecke H (2006) Symmetrical dimethylarginine: a new combined parameter for renal function and extent of coronary artery disease. J Am Soc Nephrol 17:1128–1134

    Article  Google Scholar 

  41. Siegerink B, Maas R, Vossen CY, Schwedhelm E, Koenig W, Böger R, Rothenbacher D, Brenner H, Breitling LP (2013) Asymmetric and symmetric dimethylarginine and risk of secondary cardiovascular disease events and mortality in patients with stable coronary heart disease: The KAROLA follow-up study. Clin Res Cardiol 102:193–202

    Article  CAS  Google Scholar 

  42. Schulze F, Carter AM, Schwedhelm E, Ajjan R, Maas R, von Holten R-A, Atzler D, Grant PJ, Böger RH (2010) Symmetric dimethylarginine predicts all-cause mortality following ischemic stroke. Atherosclerosis 208:518–523

    Article  CAS  Google Scholar 

  43. Staniszewska A, Rajagopalan S, Al-Shaheen A, Thies F, Brittenden J (2015) Increased levels of symmetric dimethyl-arginine are associated with all-cause mortality in patients with symptomatic peripheral arterial disease. J Vasc Surg 61:1292–1298

    Article  Google Scholar 

  44. Wang J, Sim AS, Wang XL, Salonikas C, Moriatis M, Naidoo D, Wilcken DEL (2008) Relations between markers of renal function, coronary risk factors and the occurrence and severity of coronary artery disease. Atherosclerosis 197:853–859

    Article  CAS  Google Scholar 

  45. Yoshino Y, Kohara K, Abe M, Ochi S, Mori Y, Yamashita K, Igase M, Tabara Y, Mori T, Miki T, Ueno S (2014) Missense variants of the alanine: glyoxylate aminotransferase 2 gene correlated with carotid atherosclerosis in the Japanese population. J Biol Regul Homeost Agents 28:605–614

    CAS  PubMed  Google Scholar 

  46. Seppälä I, Kleber ME, Bevan S, Lyytikäinen L-P, Oksala N, Hernesniemi JA, Mäkelä K-M, Rothwell PM, Sudlow C, Dichgans M, Mononen N, Vlachopoulou E, Sinisalo J, Delgado GE, Laaksonen R, Koskinen T, Scharnagl H, Kähönen M, Markus HS, März W, Lehtimäki T (2016) Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke. Sci Rep 6:23207

    Article  Google Scholar 

  47. Zhou J-P, Bai Y-P, Hu X-L, Kuang D-B, Shi R-Z, Xiong Y, Zhang W, Xia J, Chen B-L, Yang T-L, Chen X-P (2014) Association of the AGXT2 V140I polymorphism with risk for coronary heart disease in a Chinese population. J Atheroscler Thromb 21:1022–1030

    Article  Google Scholar 

  48. Hu X-L, Zhou J-P, Kuang D-B, Qi H, Peng L-M, Yang T-L, Li X, Zhang W, Zhou H-H, Chen X-P (2016) Considerable impacts of AGXT2 V140I polymorphism on chronic heart failure in the Chinese population. Atherosclerosis 251:255–262

    Article  CAS  Google Scholar 

  49. Seppälä I, Kleber ME, Bevan S, Lyytikäinen L-P, Oksala N, Hernesniemi JA, Mäkelä K-M, Rothwell PM, Sudlow C, Dichgans M, Mononen N, Vlachopoulou E, Sinisalo J, Delgado GE, Laaksonen R, Koskinen T, Scharnagl H, Kähönen M, Markus HS (2016) Associations of functional alanine-glyoxylate aminotransferase 2 gene variants with atrial fibrillation and ischemic stroke. Sci Rep. https://doi.org/10.1038/srep23207

    Article  PubMed  PubMed Central  Google Scholar 

  50. Luneburg N, Lieb W, Zeller T, Chen M-H, Maas R, Carter AM, Xanthakis V, Glazer NL, Schwedhelm E, Seshadri S, Ikram MA, Longstreth WT, Fornage M, Konig IR, Loley C, Ojeda FM, Schillert A, Wang TJ, Sticht H, Kittel A, Konig J, Benjamin EJ, Sullivan LM, Bernges I, Anderssohn M, Ziegler A, Gieger C, Illig T, Meisinger C, Wichmann H-E, Wild PS, Schunkert H, Psaty BM, Wiggins KL, Heckbert SR, Smith N, Lackner K, Lunetta KL, Blankenberg S, Erdmann J, Munzel T, Grant PJ, Vasan RS, Boger RH (2014) Genome-Wide Association Study of L-arginine and dimethylarginines reveals novel metabolic pathway for symmetric dimethylarginine. Circ Cardiovasc Genet 7:864–872

    Article  Google Scholar 

  51. Ding H, Wu B, Wang H, Lu Z, Yan J, Wang X, Shaffer JR, Hui R, Wang DW (2010) A novel loss-of-function DDAH1 promoter polymorphism is associated with increased susceptibility to thrombosis stroke and coronary heart disease. Circ Res 106:1145–1152

    Article  CAS  Google Scholar 

  52. Anderssohn M, McLachlan S, Lüneburg N, Robertson C, Schwedhelm E, Williamson RM, Strachan MWJ, Ajjan R, Grant PJ, Böger RH, Price JF (2014) Genetic and environmental determinants of dimethylarginines and association with cardiovascular disease in patients with type 2 diabetes. Diabetes Care 37:846–854

    Article  CAS  Google Scholar 

  53. Abhary S, Burdon KP, Kuot A, Javadiyan S, Whiting MJ, Kasmeridis N, Petrovsky N, Craig JE (2010) Sequence variation in DDAH1 and DDAH2 genes is strongly and additively associated with serum ADMA concentrations in individuals with type 2 diabetes. PLoS ONE 5:e9462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept—MZG, SIH; design—MZG, SIH, MA; supervision—MZG, SIH; fundings—MZG, SIH; materials—HAS; data collection and/or processing—MA, SIH; analysis and/or interpretation—MZG, SIH, MFA, MA; literature review—MA, MFA; writing—MZG, SIH, MFA, MA; critical review—MZG.

Corresponding author

Correspondence to Sally I. Hassanein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

German University Cairo ethics committee [Chair of Committee Prof. Dr. Hans-Georg Breitinger, Hans-Georg Breitinger (hans.breitinger@guc.edu.eg)], approved the study protocols.

Informed consent

Consent by all participants (patients and healthy controls).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir, M., Hassanein, S.I., Abdel Rahman, M.F. et al. AGXT2 and DDAH-1 genetic variants are highly correlated with serum ADMA and SDMA levels and with incidence of coronary artery disease in Egyptians. Mol Biol Rep 45, 2411–2419 (2018). https://doi.org/10.1007/s11033-018-4407-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4407-1

Keywords

Navigation