Skip to main content
Log in

Identification of appropriate reference genes for local immune-related studies in Morada Nova sheep infected with Haemonchus contortus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Due to the great economic impact of Haemonchus contortus on sheep farming, there is an increasing number of studies addressing host resistance against this nematode, including identification of directly related immune mechanisms. In this context, relative gene expression by RT-qPCR have been largely used, due to its rapidity, high sensitivity, specificity, and reproducibility. Although, appropriate reference gene selection is crucial for accurate interpretation of results. In this study, five reference genes (GAPDH, G6PDH, YWHAZ, ACTB, and B2M) were tested for expression stability in abomasum (fundic and pyloric regions) and abomasal lymph nodes of Morada Nova sheep classified as resistant (n = 5) or susceptible (n = 5) to H. contortus infection in a flock of 151 animals. GAPDH combined with YWHAZ were selected as reference genes for abomasal fundic region and abomasal lymph nodes, whereas YWHAZ was the most stable gene for abomasal pyloric region. These genes presented the lowest intra- and inter-group variations and, consequently, highest stability. In contrast, expression of G6PDH was the least stable in all tissues. The impact of reference gene selection was demonstrated by relative quantification of a pro-inflammatory cytokine (TNFα) in abomasal fundic region. Significant differences in TNFα expression levels between resistant and susceptible groups were only observed when the most stable genes (GAPDH combined with YWHAZ) or GAPDH were used as reference genes, whereas no significant differences were observed when other tested reference genes were used. It was demonstrated that normalization of expression data using inappropriate reference genes may significantly influence interpretation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amarante AFT, Bricarello PA, Rocha RA, Gennari SM (2004) Resistance of Santa Ines, Suffolk and Ile de France sheep to naturally acquired gastrointestinal nematode infections. Vet Parasitol 120:91–106. https://doi.org/10.1016/j.vetpar.2003.12

    Article  CAS  PubMed  Google Scholar 

  2. Cavalcante ACR, Vieira LS, Chagas ACS, Molento MB (2009) Doenças parasitárias de caprinos e ovinos: epidemiologia e controle. Embrapa Informação Tecnológica, Brasilia

    Google Scholar 

  3. Chagas AC, Katiki LM, Silva IC, Giglioti R, Esteves SN, Oliveira MC, Barioni Júnior W (2013) Haemonchus contortus: a multiple-resistant Brazilian isolate and the costs for its characterization and maintenance for research use. Parasitol Int 62:1–6. https://doi.org/10.1016/j.parint.2012.07.001

    Article  PubMed  Google Scholar 

  4. Almeida FA, Garcia KC, Torgerson PR, Amarante AF (2010) Multiple resistance to anthelmintics by Haemonchus contortus and Trichostrongylus colubriformis in sheep in Brazil. Parasitol Int 59:622–625. https://doi.org/10.1016/j.parint.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  5. Cintra MC, Teixeira VN, Nascimento LV, Sotomaior CS (2016) Lack of efficacy of monepantel against Trichostrongylus colubriformis in sheep in Brazil. Vet Parasitol 216:4–6. https://doi.org/10.1016/j.vetpar.2015.11.013

    Article  CAS  PubMed  Google Scholar 

  6. Facó O, Paiva SR, Alves LRN, Lobo RNB, Vilela LCV (2008) Raça Morada Nova: origem, características e perspectivas. Embrapa Caprinos, Sobral

    Google Scholar 

  7. McManus C, Hermuche P, Paiva SR, Moraes JCF, Melo CB, Mendes C (2014) Geographical distribution of sheep breeds in Brazil and their relationship with climatic and environmental factors as risk classification for conservation. Braz J Sci Technol 1:2–15. https://doi.org/10.1186/2196-288X-1-3

    Article  Google Scholar 

  8. Issakowicz J, Issakowicz ACKS, Bueno MS, Costa RLD, Katiki LM, Torres Geraldo A, Abdalla AL, Mcmanus C, Louvandini H (2016) Parasitic infection, reproductive and productive performance from Santa Inês and Morada Nova ewes. Small Rumin Res 136:96–103. https://doi.org/10.1016/j.smallrumres.2016.01.015

    Article  Google Scholar 

  9. Ferreira JB, Bezerra ACDS, Guilhermino MM, Leite JHGM et al (2017) Performance, endoparasitary control and blood values of ewes locally adapted in semiarid region. Comp Immunol Microbiol Infect Dis 52:23–29. https://doi.org/10.1016/j.cimid.2017.05.004

    Article  PubMed  Google Scholar 

  10. Zaros LG, Bricarello PA, Amarante AFT, Coutinho LL (2007) Quantification of bovine cytokine expression using real-time RT-PCR methodology. Genet Mol Biol 30:575–579. https://doi.org/10.1590/S1415-47572007000400012

    Article  CAS  Google Scholar 

  11. Wang W, Yuan C, Wang S, Song X, Xu L, Yan R, Hasson IA, Li X (2014) Transcriptional and proteomic analysis reveal recombinant galectins of Haemonchus contortus down-regulated functions of goat PBMC and modulation of several signaling cascades in vitro. J Proteomics 98:123–137. https://doi.org/10.1016/j.jprot.2013.12.017

    Article  CAS  PubMed  Google Scholar 

  12. MacKinnon KM, Bowdridge SA, Kanevsky-Mullarky I, Zajac AM, Notter DR (2015) Gene expression profiles of hair and wool sheep reveal importance of Th2 immune mechanisms for increased resistance to Haemonchus contortus. J Anim Sci 93:2074–2082. https://doi.org/10.2527/jas.2014-8652

    Article  CAS  PubMed  Google Scholar 

  13. Patra G, Jas R, Ghosh J, Borthakur SK, Paul A (2016) Single nucleotide polymorphism and expression studies of the interferon gamma gene and its role against Haemonchus contortus in Garole and Sahabadi sheep. Asian Pac J Trop Dis 6:106–112. https://doi.org/10.1016/S2222-1808(15)60994-X

    Article  CAS  Google Scholar 

  14. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  15. De Spiegelaere W, Dern-Wieloch J, Weigel R, Schumacher V, Schorle H, Nettersheim D et al (2015) Reference gene validation for RT-qPCR, a note on different available software packages. PLoS ONE. https://doi.org/10.1371/journal.pone.0122515

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guo Z, González JF, Hernandez JN, McNeilly TN et al (2016) Possible mechanisms of host resistance to Haemonchus contortus infection in sheep breeds native to the Canary Islands. Sci Rep 1:1–14. https://doi.org/10.1038/srep26200

    Article  CAS  Google Scholar 

  17. Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193. https://doi.org/10.1677/jme.0.0250169

    Article  CAS  PubMed  Google Scholar 

  18. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR—a perspective. J Mol Endocrinol 34:597–601. https://doi.org/10.1677/jme.1.01755

    Article  CAS  PubMed  Google Scholar 

  19. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. Biotechniques 39:75–85. https://doi.org/10.2144/05391RV01

    Article  CAS  PubMed  Google Scholar 

  20. Thomas KC, Zheng XF, Garces Suarez F, Raftery JM, Quinlan KGR, Yang N et al (2014) Evidence based selection of commonly used RT-qPCR reference genes for the analysis of mouse skeletal muscle. PLoS ONE. https://doi.org/10.1371/journal.pone.0088653

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  PubMed  PubMed Central  Google Scholar 

  22. Radonić A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A (2004) Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun 313:856–862. https://doi.org/10.1016/j.bbrc.2003.11.177

    Article  CAS  PubMed  Google Scholar 

  23. Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol. https://doi.org/10.1186/1471-2199-10-11

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gentile AM, Lhamyani S, Coin-Araguez L, Oliva-Olivera W, Zayed H, Vega-Rioja A, Monteseirin J, Romero-Zerbo SY, Tinahones FJ, Bermudez-Silva FJ, El Bekay R (2016) RPL13A and EEF1A1 are suitable reference genes for qPCR during adipocyte differentiation of vascular stromal cells from patients with different BMI and HOMA-IR. PLoS ONE. https://doi.org/10.1371/journal.pone.0157002

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ofinran O, Bose U, Hay D, Abdul S, Tufatelli C, Khan R (2016) Selection of suitable reference genes for gene expression studies in normal human ovarian tissues, borderline ovarian tumours and ovarian cancer. Mol Med Rep 14:5725–5731. https://doi.org/10.3892/mmr.2016.5933

    Article  CAS  PubMed  Google Scholar 

  26. Xiao J, Li X, Liu J, Fan X, Lei H, Li C (2017) Identification of reference genes in blood before and after entering the plateau for SYBR green RT-qPCR studies. PeerJ. https://doi.org/10.7717/peerj.3726

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol Lett 26:509–515. https://doi.org/10.1023/B:BILE.0000019559.84305.47

    Article  CAS  PubMed  Google Scholar 

  28. Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  29. Wood IB, Amaral NK, Bairden K et al (1995) World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) second edition of guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine, ovine, caprine). Vet Parasitol 58:181–213. https://doi.org/10.1016/0304-4017(95)00806-2

    Article  CAS  PubMed  Google Scholar 

  30. Garcia-Crespo D, Juste RA, Hurtado A (2005) Selection of ovine housekeeping genes for normalisation by real-time RT-PCR; analysis of PrP gene expression and genetic susceptibility to scrapie. BMC Vet Res. https://doi.org/10.1186/1746-6148-1-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zaros LG, Coutinho LL, Sider LH, Medeiros HR, Neves MR et al (2010) Evaluation of reference genes for real-time PCR studies of Brazilian Somalis sheep infected by gastrointestinal nematodes. Genet Mol Biol 33:486–490. https://doi.org/10.1590/S1415-47572010000300018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vorachek WR, Bobe G, Hall JA (2013) Reference gene selection for quantitative PCR studies in sheep neutrophils. Int J Mol Sci 14:11484–11495. https://doi.org/10.3390/ijms140611484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu W, Lin Y, Liao H, Wang Y (2015) Selection of reference genes for gene expression studies related to intramuscular fat deposition in Capra hircus skeletal muscle. PLoS One. https://doi.org/10.1371/journal.pone.0121280

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pereira-Fantini PM, Rajapaksa AE, Oakley R, Tingay DG (2016) Selection of reference genes for gene expression studies related to lung injury in a preterm lamb model. Sci Rep. https://doi.org/10.1038/srep26476

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hassan M, Hanrahan JP, Good B, Mulcahy G, Sweeney T (2011) A differential interplay between the expression of Th1/Th2/Treg related cytokine genes in Teladorsagia circumcincta infected DRB1*1101 carrier lambs. Vet Res. https://doi.org/10.1186/1297-9716-42-45

    Article  PubMed  PubMed Central  Google Scholar 

  36. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. https://doi.org/10.1093/nar/29.9.e45

    Article  PubMed  PubMed Central  Google Scholar 

  37. Giulietti A, Overbergh L, Valckx D, Dacallonne B, Bouillon R, Mathieu C (2001) An overview of real time quantitative PCR: applications to quantify cytokine gene expression. Methods 25:386–401. https://doi.org/10.1006/meth.2001.1261

    Article  CAS  PubMed  Google Scholar 

  38. Cao H, Kabaroff LC, You Q, Rodrigues A, Boermans H, Karrow NA (2006) Characterization of ovine hepatic gene expression profiles in response to E. coli lipopolysaccharide using a bovine cDNA microarray. BMC Vet Res. https://doi.org/10.1186/1746-6148-2-34

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gossner AG, Venturina VM, Shaw DJ, Pemberton JM, Hopkins J (2012) Relationship between susceptibility of Blackface sheep to Teladorsagia circumcincta infection and an inflammatory mucosal T cell response. Vet Res. https://doi.org/10.1186/1297-9716-43-26

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zaros LG, Bricarello PA, Amarante AF, Rocha RA, Kooyman FN, De Vries E, Coutinho LL (2010) Cytokine gene expression in response to Haemonchus placei infections in Nelore cattle. Vet Parasitol 171:68–73. https://doi.org/10.1016/j.vetpar.2010.03.020

    Article  CAS  PubMed  Google Scholar 

  41. Gossner A, Wikie H, Jodhi A, Hopkins J (2013) Exploring the abomasal lymph node transcriptome for genes associated with resistance to the sheep nematode Teladorsagia circumcincta. Vet Res. https://doi.org/10.1186/1297-9716-44-68

    Article  PubMed  PubMed Central  Google Scholar 

  42. Peletto S, Bertuzzi S, Campanella C et al (2011) Evaluation of internal reference genes for quantitative expression analysis by real-time PCR in ovine whole blood. Int J Mol Sci 12:7732–7747. https://doi.org/10.3390/ijms12117732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schulze F, Malhan D, El Khassawna T et al (2017) A tissue-based approach to selection of reference genes for quantitative real-time PCR in a sheep osteoporosis model. BMC Genomics. https://doi.org/10.1186/s12864-017-4356-4

    Article  PubMed  PubMed Central  Google Scholar 

  44. Mo F, Zhao J, Liu N, Cao L, Jiang S (2014) Validation of reference genes for RT-qPCR analysis of CYP4T expression in crucian carp. Genet Mol Biol 37:500–507. https://doi.org/10.1590/S1415-47572014000400005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sellars MJ, Vuocolo T, Leeton LA, Coman GJ, Degnan BM, Preston NP (2007) Realtime RT-PCR quantification of Kuruma shrimp transcripts: a comparison of relative and absolute quantification procedures. J Biotechnol 129:391–399. https://doi.org/10.1016/j.jbiotec.2007.01.029

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), through a research grant (Grant No. 2017/01626-1) and scholarships (Grant Nos. 2017/00373-2 and 2017/24289-0), and scholarships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (PIBIC/CNPq, Grant Nos. 122027/2017-5 and 118297/2015-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Henrique Barbosa Toscano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures were approved by the Embrapa Pecuária Sudeste Ethics Committee on Animal Experimentation (process no. 04/2017), in accordance with the ethical principles and guidelines for animal experimentation adopted by the Brazilian College of Experimentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toscano, J.H.B., Lopes, L.G., Giraldelo, L.A. et al. Identification of appropriate reference genes for local immune-related studies in Morada Nova sheep infected with Haemonchus contortus. Mol Biol Rep 45, 1253–1262 (2018). https://doi.org/10.1007/s11033-018-4281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4281-x

Keywords

Navigation