Skip to main content
Log in

Segregation of a novel p.(Ser270Tyr) MAF mutation and p.(Tyr56∗) CRYGD variant in a family with dominantly inherited congenital cataracts

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 10 October 2017

This article has been updated

Abstract

A bilaterally blind woman, with a three generation family history of autosomal dominant congenital cataracts, variably associated with iris colobomata and microcornea, sought preconception genetic consultation. Whole-exome sequencing was performed in three affected family members, one unaffected first degree relative, and one spouse. The sequence variant c.168C>G; p.(Tyr56∗) in CRYGD, previously reported as pathogenic, and a novel mutation c.809C>A; p.(Ser270Tyr) in MAF, were identified in two affected family members; the grandmother, and half-brother of the proband. The proband inherited only the MAF mutation, whereas her clinically unaffected sister had the CRYGD change. In silico analysis supported a pathogenic role of p.(Ser270Tyr) in MAF, which was absent from publicly available whole-exome datasets, and 1161 Czech individuals. The frequency of CRYGD p.(Tyr56∗) in the ExAC dataset was higher than the estimated incidence of congenital cataract in the general population. Our study highlights that patients with genetically heterogeneous conditions may exhibit rare variants in more than one disease-associated gene, warranting caution with data interpretation, and supporting parallel screening of all genes known to harbour pathogenic mutations for a given phenotype. The pathogenicity of sequence variants previously reported as cataract-causing may require re-assessment in light of recently released datasets of human genomic variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 10 October 2017

    There was a spacing error in the initial online publication, and there were errors in the Acknowledgments section. The original article has been updated.

References

  1. Lambert SR, Drack AV (1996) Infantile cataracts. Surv Ophthalmol 40:427–458

    Article  CAS  PubMed  Google Scholar 

  2. Reddy MA, Francis PJ, Berry V, Bhattacharya SS, Moore AT (2004) Molecular genetic basis of inherited cataract and associated phenotypes. Surv Ophthalmol 49:300–315. doi: 10.1016/j.survophthal.2004.02.013

    Article  PubMed  Google Scholar 

  3. Moore AT (2004) Understanding the moleculas genetics of congenital cataract may have wider implications for age related cataract. Br J Ophthalmol 88:2–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shiels A, Bennett TM, Hejtmancik JF (2010) MolVis 16:2007–2015

    CAS  Google Scholar 

  5. Ma AS, Grigg JR, Ho G et al (2016) Sporadic and familial congenital cataracts: mutational spectrum and new diagnoses using next-generation sequencing. Hum Mutat 37:371–384. doi: 10.1002/humu.22948

    Article  PubMed  PubMed Central  Google Scholar 

  6. Churchill A, Graw J (2011) Clinical and experimental advances in congenital and paediatric cataracts. Philos Trans R Soc Lond B Biol Sci 366:1234–1249. doi: 10.1098/rstb.2010.0227

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoehenwarter W, Klose J, Jungblut PR (2006) Eye lens proteomics. Amino Acids 30:369–389. doi: 10.1007/s00726-005-0283-9

    Article  CAS  PubMed  Google Scholar 

  8. Brakenhoff RH, Aarts HJ, Reek FH, Lubsen NH, Schoenmakers JG (1990) Human gamma-crystallin genes. A gene family on its way to extinction. J Mol Biol 216:519–532

    Article  CAS  PubMed  Google Scholar 

  9. Kmoch S, Brynda J, Asfaw B et al (2000) Link between a novel human gammad-crystallin allele and a unique cataract phenotype explained by protein crystallography. Hum Mol Genet 9:1779–1786

    Article  CAS  PubMed  Google Scholar 

  10. Stephan DA, Gillanders E, Vanderveen D et al (1999) Progressive juvenile-onset punctate cataracts caused by mutation of the gammad-crystallin gene. Proc Natl Acad Sci USA 96:1008–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hejtmancik JF (2008) Congenital cataracts and their molecular genetics. Semin Cell Dev Biol 19:134–149. doi: 10.1016/j.semcdb.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  12. Motohashi H, O’Connor T, Katsuoka F, Engel JD, Yamamoto M (2002) Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294:1–12

    Article  CAS  PubMed  Google Scholar 

  13. Kannan MB, Solovieva V, Blank V (2012) The small MAF transcription factors MAFF, MAFG and MAFK: current knowledge and perspectives. Biochim Biophys Acta 1823:1841–1846. doi: 10.1016/j.bbamcr.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  14. Civil A, van Genesen ST, Lubsen NH (2002) c-Maf, the gammad-crystallin Maf-responsive element and growth factor regulation. Nucleic Acids Res 30:975–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jamieson RV, Munier F, Balmer A, Farrar N, Perveen R, Black GC (2003) Pulverulent cataract with variably associated microcornea and iris coloboma in a MAF mutation family. Br J Ophthalmol 87:411–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Narumi Y, Nishina S, Tokimitsu M et al (2014) Identification of a novel missense mutation of MAF in a Japanese family with congenital cataract by whole exome sequencing: a clinical report and review of literature. Am J Med Genet A 164A:1272–1276. doi: 10.1002/ajmg.a.36433

    Article  PubMed  Google Scholar 

  17. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595. doi: 10.1093/bioinformatics/btp698

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi: 10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shiels A, Bennett TM, Hejtmancik JF (2010) Cat-Map: putting cataract on the map. Mol Vis 16:2007–2015

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11:863–874. doi: 10.1101/gr.176601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adzhubei IA, Schmidt S, Peshkin L et al (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248–249. doi: 10.1038/nmeth0410-248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li B, Krishnan VG, Mort ME et al (2009) Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25:2744–2750. doi: 10.1093/bioinformatics/btp528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS ONE 7:e46688. doi: 10.1371/journal.pone.0046688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7:575–576. doi: 10.1038/nmeth0810-575

    Article  CAS  PubMed  Google Scholar 

  25. Calabrese R, Capriotti E, Fariselli P, Martelli PL, Casadio R (2009) Functional annotations improve the predictive score of human disease-related mutations in proteins. Hum Mutat 30:1237–1244. doi: 10.1002/humu.21047

    Article  CAS  PubMed  Google Scholar 

  26. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217. doi: 10.1006/jmbi.2000.4042

    Article  CAS  PubMed  Google Scholar 

  27. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12. doi: 10.1002/(SICI)1098-1004(200001)15:1

    Article  Google Scholar 

  28. Santana A, Waiswol M, Arcieri ES, Cabral de Vasconcellos JP, Barbosa de Melo M (2009) Mutation analysis of CRYAA. CRYGC, and CRYGD associated with autosomal dominant congenital cataract in Brazilian families. Mol Vis 15:793–800

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Vanita V, Guo G, Singh D, Ott CE, Robinson PN (2014) Differential effect of cataract-associated mutations in MAF on transactivation of MAF target genes. Mol Cell Biochem 396:137–145. doi: 10.1007/s11010-014-2150-z

    Article  CAS  PubMed  Google Scholar 

  30. Hansen L, Eiberg H, Rosenberg T (2007) Novel MAF mutation in a family with congenital cataract-microcornea syndrome. Mol Vis 13:2019–2022

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Charles University institutional programs UNCE 204011 and PROGRES-Q26/LF1. Specific support was provided by Grants 15-28208A and 17-30500A from the Ministry of Health of the Czech Republic and LQ1604 NPU II from the Ministry of Education of the Czech Republic. We thank The National Center for Medical Genomics (LM2015091) for bioinformatical support with next-generation sequencing data analysis and for providing ethnically matched population genotype frequency data (project CZ.02.1.01/0.0/0.0/16_013/0001634). We thank Jana Kasakova for patients’ referrals and clinical assessment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Liskova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article has been changed to correctly present the values in the title that uphold the article’s content.

A correction to this article is available online at https://doi.org/10.1007/s11033-017-4130-3.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 253 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudakova, L., Stranecky, V., Ulmanova, O. et al. Segregation of a novel p.(Ser270Tyr) MAF mutation and p.(Tyr56∗) CRYGD variant in a family with dominantly inherited congenital cataracts. Mol Biol Rep 44, 435–440 (2017). https://doi.org/10.1007/s11033-017-4121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-017-4121-4

Keywords

Navigation