Skip to main content

Advertisement

Log in

Characterization of 32 microsatellite loci for the Pacific red snapper, Lutjanus peru, through next generation sequencing

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We developed a set of hypervariable microsatellite markers for the Pacific red snapper (Lutjanus peru), an economically important marine fish for small-scale fisheries in the west coast of Mexico. We performed shotgun genome sequencing with the 454 XL titanium chemistry and used bioinformatic tools to search for perfect microsatellite loci. We selected 66 primer pairs that were synthesized and genotyped in an ABI PRISM 3730XL DNA sequencer in 32 individuals from the Gulf of California. We estimated levels of genetic diversity, deviations from linkage and Hardy–Weinberg equilibrium, estimated the frequency of null alleles and the probability of individual identity for the new markers. We reanalyzed 16 loci in 16 individuals to estimate genotyping error rates. Eighteen loci failed to amplify, 16 loci were discarded due to unspecific amplifications and 32 loci (14 tetranucleotide and 18 dinucleotide) were successfully scored. The average number of alleles per locus was 21 (±6.87, SD) and ranged from 8 to 34. The average observed and expected heterozygosities were 0.787 (±0.144 SD, range 0.250–0.935) and 0.909 (±0.122 SD, range 0.381–0.965), respectively. No significant linkage was detected. Eight loci showed deviations from Hardy–Weinberg equilibrium, and from these, four loci showed moderate null allele frequencies (0.104–0.220). The probability of individual identity for the new loci was 1.46−62. Genotyping error rates averaged 9.58%. The new markers will be useful to investigate patterns of larval dispersal, metapopulation dynamics, fine-scale genetic structure and diversity aimed to inform the implementation of spatially explicit fisheries management strategies in the Gulf of California.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Diaz-Uribe JG, Chavez EA, Elorduy-Garay JF (2004) Assessment of the Pacific red snapper (Lutjanus peru) fishery in the southwestern Gulf of California. Ciencias Marinas 30(4):561–574

    Google Scholar 

  2. Leslie H, Basurto X, Nenadovic M et al (2015) Operationalizing the social-ecological systems framework to assess sustainability. Proc Natl Acad Sci USA 112:5979–5984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rocha-Olivares A, Sandoval-Castillo J (2003) Mitochondrial diversity and genetic structure in allopatric populations of the Pacific red snapper Lutjanus peru. Ciencias Marinas 29(2):197–209

    CAS  Google Scholar 

  4. Zarate-Becerra ME, Espino-Barr E, Garcia-Boa A et al (2014) Huachinango del Pacífico Centro-Sur, costa de Nayarit a Chiapas. In: Belendez-Moreno FJ, Espino-Barr E, Galindo-Cortes G, Gaspar-Dillanes MT, Huidobro-Campos L, Morales-Bojorquez E (eds) Sustentabilidad y Pesca Responsable en Mexico. Evaluacion y Manejo. SAGARPA Instituto Nacional de Pesca, Mexico, D.F., pp 141–175

  5. Brown CJ, White C, Beger M, Grantham HS, Halpern BS, Klein CJ, Mumby PJ, Tulloch VJD, Ruckelshaus M, Possingham HP (2015) Fisheries and biodiversity benefits of using static versus dynamic models for designing marine reserve networks. Ecosphere 6(10):1–14. doi:10.1890/es14-00429.1

    Article  Google Scholar 

  6. Beger M, Selkoe KA, Treml EA, Barber PH, von der Heyden S, Crandall ED, Toonen RJ, Riginos C (2014) Evolving coral reef conservation with genetic information. Bull Mar Sci 90(1):159–185. doi:10.5343/bms.2012.1106

    Article  Google Scholar 

  7. Bayona-Vasquez NJ, Hernandez-Alvarez CA, Glenn T, Dominguez-Dominguez O, Uribe-Alcocer M, Diaz-Jaimes P (2015) Complete mitogenome sequences of the pacific red snapper (Lutjanus peru) and the spotted rose snapper (Lutjanus gutattus). Mitochondrial DNA 28(2):1–2. doi:10.3109/19401736.2015.1115851

    Google Scholar 

  8. Jackson AM, Munguía-Vega A, Beldade R, Erisman BE, Bernardi G (2015) Incorporating historical and ecological genetic data for leopard grouper (Mycteroperca rosacea) into marine reserve design in the Gulf of California. Conserv Genet 16:811–822. doi:10.1007/s10592-015-0702-8

    Article  Google Scholar 

  9. Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N, Martin J-F (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26(3):403–404. doi:10.1093/bioinformatics/btp67010.1111/j.17550998.2009.02750.x

    Article  PubMed  Google Scholar 

  10. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  11. Amos W, Hoffman JI, Frodsham A, Zhang L, Best S, Hill AVS (2007) Automated binning of microsatellite alleles: problems and solutions. Mol Ecol Notes 7(1):10–14. doi:10.1111/j.1471-8286.2006.01560.x

    Article  CAS  Google Scholar 

  12. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38:1358–1370

    Article  Google Scholar 

  13. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): Population Genetics Software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  14. Rice WR (1989) Analyzing tables of statistical tests. Evol Int J Org Evol 43(1):223–225

    Article  Google Scholar 

  15. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  16. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28(19):2537–2539. doi:10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859. doi:10.1038/nrg1707

    Article  CAS  PubMed  Google Scholar 

  18. Allendorf F, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Padstow, UK

    Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Mariana Walther, Juan Leonardo Lucero Cuevas (Tito) and Jose Amador Gutierrez (Pepe) for their assistance with acquiring samples in the field, and Ollin Gonzalez-Cuellar for helping with logistics during the project. Alexander Ochoa, Karla Vargas, Jose Francisco Dominguez-Contreras (Borre), Geraldine Parra and Stacy L. Sotak help us at various stages during microsatellite genotyping. DAPG received a CONACYT fellowship (250126). This work was funded by The Walton Family Foundation grant # 2011-1235 and The David and Lucile Packard Foundation grants #2013-39359, #2013-39400, #2015-62798. We also thank two anonymous reviewers for helpful comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrián Munguía-Vega.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest exists.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paz-García, D.A., Munguía-Vega, A., Plomozo-Lugo, T. et al. Characterization of 32 microsatellite loci for the Pacific red snapper, Lutjanus peru, through next generation sequencing. Mol Biol Rep 44, 251–256 (2017). https://doi.org/10.1007/s11033-017-4105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-017-4105-4

Keywords

Navigation