Skip to main content
Log in

Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We studied molecular events and potential mechanisms underlying the process of female-to-male sex transformation in the rice field eel (Monopterus albus), a protogynous hermaphrodite fish in which the gonad is initially a female ovary and transforms into male testes. We cloned and identified a novel gonadal soma derived factor (GSDF), which encodes a member of the transforming growth factor-beta superfamily. gsdf expression was measured in gonads of female, intersex and male with reverse transcription-PCR and gsdf’s role in sex transformation was studied with qPCR, histological analysis and dual-color in situ hybridization assays and compared to other sex-related genes. gsdf was correlated to Sertoli cell differentiation, indicating involvement in testicular differentiation and sex transformation from female to male in this species. A unique expression pattern reveals a potential role of gsdf essential for the sex transformation of rice field eels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cutting A, Chue J, Smith CA (2013) Just how conserved is vertebrate sex determination? Dev Dyn 242(4):380–387

    Article  CAS  PubMed  Google Scholar 

  2. Kobayashi Y, Nagahama Y, Nakamura M (2013) Diversity and plasticity of sex determination and differentiation in fishes. Sex Dev 7(1–3):115–125

    Article  CAS  PubMed  Google Scholar 

  3. Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208(3–4):191–364

    Article  CAS  Google Scholar 

  4. Yang DQ, Cheng F, Ruan GL, Su YB (2008) Relationship between sex reversal, body weight and age of monopterus albus. J. Yangtxe Univ 5(4):45–47

    Google Scholar 

  5. Nagahama Y (2005) Molecular mechanisms of sex determination and gonadal sex differentiation in fish. Fish Physiol Biochem 31(2–3):105–109

    Article  CAS  PubMed  Google Scholar 

  6. Josso N et al (1998) The role of anti-Mullerian hormone in gonadal development. Mol Cell Endocrinol 145(1–2):3–7

    Article  PubMed  Google Scholar 

  7. da Morais SS et al (1996) Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 14(1):62–68

    Article  Google Scholar 

  8. Raymond CS et al (1998) Evidence for evolutionary conservation of sex-determining genes. Nature 391(6668):691–695

    Article  CAS  PubMed  Google Scholar 

  9. Smith CA et al (2009) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461(7261):267–271

    Article  CAS  PubMed  Google Scholar 

  10. Pannetier M et al (2006) FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J Mol Endocrinol 36(3):399–413

    Article  CAS  PubMed  Google Scholar 

  11. Zhou R et al (2003) Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus). Mol Reprod Dev 66(3):211–217

    Article  CAS  PubMed  Google Scholar 

  12. Huang X et al (2005) Multiple alternative splicing and differential expression of dmrt1 during gonad transformation of the rice field eel. Biol Reprod 73(5):1017–1024

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Y et al (2008) Two cytochrome P450 aromatase genes in the hermaphrodite ricefield eel Monopterus albus: mRNA expression during ovarian development and sex change. J Endocrinol 199(2):317–331

    Article  CAS  PubMed  Google Scholar 

  14. Hu Q et al (2014) Molecular cloning and analysis of gonadal expression of Foxl2 in the rice-field eel Monopterus albus. Sci Rep 4:6884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao Y et al (2014) Characterization and differential expression patterns of conserved microRNAs and mRNAs in three genders of the rice field eel (Monopterus albus). Sex Dev 8(6):387–398

    CAS  PubMed  Google Scholar 

  16. Hu Q et al (2015) Molecular cloning and characterization of amh and dax1 genes and their expression during sex inversion in rice-field eel Monopterus albus. Sci Rep 5:16667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yoshinaga N et al (2004) Sexually dimorphic expression of a teleost homologue of Mullerian inhibiting substance during gonadal sex differentiation in Japanese flounder, Paralichthys olivaceus. Biochem Biophys Res Commun 322(2):508–513

    Article  CAS  PubMed  Google Scholar 

  18. Li M et al (2015) A tandem duplicate of anti-Mullerian hormone with a missense SNP on the Y Chromosome is essential for male sex determination in nile tilapia, Oreochromis niloticus. PLoS Genet 11(11):e1005678

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eshel O et al (2014) Identification of male-specific amh duplication, sexually differentially expressed genes and microRNAs at early embryonic development of Nile tilapia (Oreochromis niloticus). BMC Genom 15:774

    Article  Google Scholar 

  20. Hattori RS et al (2012) A Y-linked anti-Mullerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA 109(8):2955–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. von Hofsten J, Larsson A, Olsson PE (2005) Novel steroidogenic factor-1 homolog (ff1d) is coexpressed with anti-Mullerian hormone (AMH) in zebrafish. Dev Dyn 233(2):595–604

    Article  Google Scholar 

  22. Sawatari E et al (2007) A novel transforming growth factor-beta superfamily member expressed in gonadal somatic cells enhances primordial germ cell and spermatogonial proliferation in rainbow trout (Oncorhynchus mykiss). Dev Biol 301(1):266–275

    Article  CAS  PubMed  Google Scholar 

  23. Shibata Y et al (2010) Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka. Gene Expr Patterns 10(6):283–289

    Article  CAS  PubMed  Google Scholar 

  24. Kaneko H et al (2015) Gonadal soma-derived factor (gsdf), a TGF-beta superfamily gene, induces testis differentiation in the teleost fish Oreochromis niloticus. Mol Cell Endocrinol 415:87–99

    Article  CAS  PubMed  Google Scholar 

  25. Gautier A, Le Gac F, Lareyre JJ (2011) The gsdf gene locus harbors evolutionary conserved and clustered genes preferentially expressed in fish previtellogenic oocytes. Gene 472(1–2):7–17

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y et al (2015) Cloning and pattern of gsdf mRNA during gonadal development in the protogynous Epinephelus akaara. Anim Reprod Sci 165:46–55

    Article  PubMed  Google Scholar 

  27. Horiguchi R et al (2013) Characterization of gonadal soma-derived factor expression during sex change in the protogynous wrasse, Halichoeres trimaculatus. Dev Dyn 242(4):388–399

    Article  CAS  PubMed  Google Scholar 

  28. Chen Y et al (2015) Cloning and expression pattern of gsdf during the first maleness reproductive phase in the protandrous Acanthopagrus latus. Gen Comp Endocrinol 217–218:71–80

    Article  PubMed  Google Scholar 

  29. Myosho T et al (2012) Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191(1):163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sinclair AH et al (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346(6281):240–244

    Article  CAS  PubMed  Google Scholar 

  31. Nanda I et al (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci USA 99(18):11778–11783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matsuda M et al (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417(6888):559–563

    Article  CAS  PubMed  Google Scholar 

  33. Xu H et al (2009) Boule is present in fish and bisexually expressed in adult and embryonic germ cells of medaka. PLoS One 4(6):e6097

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ye D et al (2007) Cloning and characterization of a rice field eel vasa-like gene cDNA and its expression in gonads during natural sex transformation. Biochem Genet 45(3–4):211–224

    Article  CAS  PubMed  Google Scholar 

  35. Ashida H et al (2013) Molecular identification and expression of FOXL2 and DMRT1 genes from willow minnow Gnathopogon caerulescens. Reprod Biol 13(4):317–324

    Article  PubMed  Google Scholar 

  36. Agrawal R et al (2009) Male-specific expression of Sox9 during gonad development of crocodile and mouse is mediated by alternative splicing of its proline-glutamine-alanine rich domain. FEBS J 276(15):4184–4196

    Article  CAS  PubMed  Google Scholar 

  37. Uhlenhaut NH et al (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139(6):1130–1142

    Article  CAS  PubMed  Google Scholar 

  38. LoNostro F et al (2003) Involvement of the gonadal germinal epithelium during sex reversal and seasonal testicular cycling in the protogynous swamp eel, Synbranchus marmoratus Bloch 1795 (Teleostei, Synbranchidae). J Morphol 257(1):107–126

    Article  CAS  Google Scholar 

  39. Guigon CJ et al (2005) Follicular cells acquire sertoli cell characteristics after oocyte loss. Endocrinology 146(7):2992–3004

    Article  CAS  PubMed  Google Scholar 

  40. Matson CK et al (2011) DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476(7358):101–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Masuyama H et al (2012) Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka. Chromosome Res 20(1):163–176

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Guan G, Li M, Zhu F, Liu Q, Naruse K, Herpin A, Nagahama Y, Li J, Hong Y (2015) Autosomal gsdf acts as a male sex initiator in the fish medaka. Sci Rep. in press

  43. Imai T, Saino K, Matsuda M (2015) Mutation of Gonadal soma-derived factor induces medaka XY gonads to undergo ovarian development. Biochem Biophys Res Commun 467(1):109–114

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai University First-class Disciplines Project of Fisheries and a grant to G. Guan by Natural Science Foundation of Shanghai (16ZR1415200). We also thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Authors’ contributions

GG designed the experiments, performed experiments, analyzed the results and wrote the manuscript. ZY carried out experiments, WC and CX performed histological analysis. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijun Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 68 kb)

Supplementary material 2 (DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Wang, C., Chen, X. et al. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change. Mol Biol Rep 43, 629–637 (2016). https://doi.org/10.1007/s11033-016-3997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3997-8

Keywords

Navigation