Skip to main content
Log in

Development of novel tetra- and trinucleotide microsatellite markers for giant grouper Epinephelus lanceolatus using 454 pyrosequencing

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Giant grouper (Epinephelus lanceolatus) is a commercially important species, but its wild population has recently been classified as vulnerable. This species has significant potential for use in aquaculture, though a greater understanding of population genetics is necessary for selective breeding programs to minimize kinship for genetically healthy individuals. High-throughput pyrosequencing of genomic DNA was used to identify and characterize novel tetra- and trinucleotide microsatellite markers in giant grouper from Sabah, Malaysia. In total, of 62,763 sequences containing simple sequence repeats (SSRs) were obtained, and 78 SSR loci were selected to possibly contain tetra- and trinucleotide repeats. Of these loci, 16 had tetra- and 8 had trinucleotide repeats, all of which exhibited polymorphisms within easily genotyped regions. A total of 143 alleles were identified with an average of 5.94 alleles per locus, with mean observed and expected heterozygosities of 0.648 and 0.620, respectively. Among of them, 15 microsatellite markers were identified without null alleles and with Hardy–Weinberg equilibrium. These alleles showed a combined non-exclusion probability of 0.01138. The probability of individual identification (PID) value combined with in descending order 12 microsatellite markers was 0.00008, which strongly suggests that the use of the microsatellite markers developed in this study in various combinations would result in a high resolution method for parentage analysis and individual identification. These markers could be used to establish a broodstock management program for giant grouper and to provide a foundation for genetic studies such as population structure, parentage analysis, and kinship selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heemstra PC, Randall JE (1993) Groupers of the world. FAO Fisheries synopsis no. 125, vol 16. FAO, Rome

  2. Ch’ng CL, Senoo S (2008) Egg and larval development of a new hybrid grouper, tiger grouper Epinephelus fuscoguttatus × giant grouper E. lanceolatus. Aquac Sci Jpn 56:505–512

    Google Scholar 

  3. Myoung JG, Kang CB, Yoo JM, Lee EK, Kim S, Jeong CH, Kim BI (2013) First record of the giant grouper Epinephelus lanceolatus (Perciformes: Serranidae: Epinephelinae) from Jeju island, South Korea. Fish Aquat Sci 16:49–52. doi:10.5657/fas.2013.0049

    Google Scholar 

  4. Hseu JR, Hwang PP, Ting YY (2004) Morphometric model and laboratory analysis of intracohort cannibalism in giant grouper Epinephelus lanceolatus fry. Fish Sci 70:482–486. doi:10.1111/j.1444-2906.2004.00829.x

    Article  CAS  Google Scholar 

  5. Yang S, Wang L, Zhang Y, Liu XC, Lin HR, Meng ZN (2011) Development and characterization of 32 microsatellite loci in the giant grouper Epinephelus lanceolatus (Serranidae). Genet Mol Res 10:4006–4011. doi:10.4238/2011.December.12.3

    Article  CAS  PubMed  Google Scholar 

  6. Zeng HS, Ding SX, Wang J, Su YQ (2008) Characterization of eight polymorphic microsatellite loci for the giant grouper (Epinephelus lanceolatus Bloch). Mol Ecol Resour 8:805–807. doi:10.1111/j.1755-0998.2007.02070.x

    Article  CAS  PubMed  Google Scholar 

  7. Shuk Man C, Chuen NW (2006) Epinephelus lanceolatus. The IUCN red list of threatened species. http://www.iucnredlist.org/details/7858/0. Accessed 25 Aug 2015

  8. Liu ZJ, Cordes JF (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1–37. doi:10.1016/j.aquaculture.2004.05.027

    Article  CAS  Google Scholar 

  9. Duran C, Appleby N, Edwards D, Batley J (2009) Molecular genetic markers: discovery, applications, data storage and visualisation. Curr Bioinform 4:16–27. doi:10.2174/157489309787158198

    Article  CAS  Google Scholar 

  10. Liu ZJ (2011) Genomic variations and marker technologies for genome-based selection. In: Liu ZJ (ed) Next generation sequencing and whole genome selection in aquaculture. Wiley-Blackwell, New York, pp 7–11

    Chapter  Google Scholar 

  11. Kuo HC, Hsu HH, Chua CS, Wang TY, Chen YM, Chen TY (2014) Development of pedigree classification using microsatellite and mitochondrial markers for giant grouper broodstock (Epinephelus lanceolatus) management in Taiwan. Mar Drugs 12:2397–2407. doi:10.3390/md12052397

    Article  PubMed  PubMed Central  Google Scholar 

  12. Primmer CR, Moller AP, Ellegren H (1995) Resolving genetic relationships with microsatellite markers: a parentage testing system for the swallow Hirundo rustica. Mol Ecol 4:493–498. doi:10.1111/j.1365-294X.1995.tb00243.x

    Article  CAS  PubMed  Google Scholar 

  13. Jarne P, Lagoda PJL (1996) Microsatellites, from molecules to populations and back. Trends Ecol Evol 11:424–429. doi:10.1016/0169-5347(96)10049-5

    Article  CAS  PubMed  Google Scholar 

  14. Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509. doi:10.1038/sj.hdy.6800545

    Article  CAS  PubMed  Google Scholar 

  15. Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194. doi:10.1093/nar/24.16.3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taberlet P, Waits LP, Luikart G (1999) Noninvasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327. doi:10.1016/S0169-5347(99)01637-7

    Article  PubMed  Google Scholar 

  17. Hamilton MB, Pincus EL, Di Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–502, 504–507

  18. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16. doi:10.1046/j.0962-1083.2001.01418.x

    Article  CAS  PubMed  Google Scholar 

  19. Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208. doi:10.3732/ajb.1100394

    Article  CAS  PubMed  Google Scholar 

  20. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264. doi:10.1016/j.ygeno.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  21. Yu JN, Won C, Jun J, Lim Y, Kwak M (2011) Fast and cost-effective mining of microsatellite markers using NGS technology: an example of a Korean water deer Hydropotes inermis argyropus. PLoS One 6:e26933. doi:10.1371/journal.pone.0026933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Asahida T, Kobayashi T, Saitoh K, Nakayama I (1996) Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci Jpn 62:727–730

    Article  Google Scholar 

  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Faircloth BC (2008) msatcommander: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8:92–94. doi:10.1111/j.1471-8286.2007.01884.x

    Article  CAS  PubMed  Google Scholar 

  25. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz SA, Misener S (eds.) Bioinformatics methods and protocols: methods in molecular biology, Humana, Totowa, pp 365–386. doi:10.1385/1-59259-192-2:365

  26. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  27. Marshall TC, Slate J, Kruuk LE, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. doi:10.1046/j.1365-294x.1998.00374.x

    Article  CAS  PubMed  Google Scholar 

  28. Valiere N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379. doi:10.1046/j.1471-8286.2002.00228.x

    Article  CAS  Google Scholar 

  29. Rousset F (2008) GENEPOP’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi:10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  30. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177

    Article  Google Scholar 

  31. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364. doi:10.1155/2012/251364

    PubMed  PubMed Central  Google Scholar 

  32. Abdelkrim J, Robertson B, Stanton JA, Gemmell N (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192. doi:10.2144/000113084

    Article  CAS  PubMed  Google Scholar 

  33. Zheng XH, Lu CY, Zhao YY, Lee C, Cao DC, Chang YM, Liang LQ, Sun XW (2010) A set of polymorphic trinucleotide and tetranucleotide microsatellite markers for silver crucian carp (Carassius auratus gibelio) and cross-amplification in crucian carp. Biochem Genet 48:624–635. doi:10.1007/s10528-010-9344-1

    Article  CAS  PubMed  Google Scholar 

  34. Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. doi:10.1111/j.1755-0998.2011.03014.x

    Article  CAS  PubMed  Google Scholar 

  35. Barnes TC, Izzo C, Bertozzi T, Saint KM, Donnellan S, Hammer MP, Gillanders BM (2014) Development of 15 microsatellite loci from mulloway, Argyrosomus japonicus (Pisces: Sciaenidae) using next generation sequencing and an assessment of their cross amplification in other sciaenids. Conserv Genet Resour 6:345–348. doi:10.1007/s12686-013-0090-7

    Article  Google Scholar 

  36. Edwards A, Civitello A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49:746–756

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Walsh PS, Fildes NJ, Reynolds R (1996) Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus vWA. Nucleic Acids Res 24:2807–2812. doi:10.1093/nar/24.14.2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang J, Li YZ, Du LM, Yang B, Shen FJ, Zhang HM, Zhang ZH, Zhang XY, Yue BS (2015) Genome-wide survey and analysis of microsatellites in giant panda (Ailuropoda melanoleuca), with a focus on the applications of a novel microsatellite marker system. BMC Genom 16:61. doi:10.1186/s12864-015-1268-z

    Article  Google Scholar 

  39. Rousset F (2004) Genetic structure and selection in subdivided populations. Princeton University, Princeton

    Google Scholar 

  40. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by Golden Seed Project (No. 213004-04-3-SB530), Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA) and Korea Forest Service (KFS); and funded by Soonchunhyang University Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In-Chul Bang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KS., Noh, C.H., Moon, SJ. et al. Development of novel tetra- and trinucleotide microsatellite markers for giant grouper Epinephelus lanceolatus using 454 pyrosequencing. Mol Biol Rep 43, 541–548 (2016). https://doi.org/10.1007/s11033-016-3980-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3980-4

Keywords

Navigation