Skip to main content
Log in

Comparison of transcriptomes of wild-type and isothiazolone-resistant Pseudomonas aeruginosa by using RNA-seq

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Isothiazolone biocides (such as Kathon) are widely used in a variety of industrial and domestic applications. However, the mechanisms through which bacteria develop resistance to these biocides are not completely clear. A better understanding of these mechanisms can contribute to optimal use of these biocides. In this study, transcription profiles of a Kathon-resistant strain of Pseudomonas aeruginosa (Pa-R) and the wild-type strain were determined using RNA sequencing (RNA-Seq) with the Illumina HiSeq 2000 platform. RNA-Seq generated 18,657,896 sequence reads aligned to 7093 genes. In all, 1550 differently expressed genes (DEGs, log2 ratio ≥1, false discovery rate (FDR) ≤0.001) were identified, of which 482 were up-regulated and 1068 were down-regulated. Most Kathon-induced genes were involved in metabolic and cellular processes. DEGs significantly enriched nitrogen metabolism and oxidative phosphorylation pathways. In addition, Pa-R showed cross-resistance to triclosan and ciprofloxacin and showed repressed pyocyanin production. These results may improve our understanding of the resistance mechanisms of P. aeruginosa against isothiazolones, and provide insight into the development of more efficient isothiazolones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hancock RE (1998) Resistance mechanisms in Pseudomonas aeruginosa and other nonfermentative gram-negative bacteria. Clin Infect Dis 27:S93–S99

    Article  CAS  PubMed  Google Scholar 

  2. Lyczak JB, Cannon CL, Pier GB (2002) Lung infections associated with cystic fibrosis. Clin Microbiol Rev 15:194–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Poole K (2011) Pseudomonas aeruginosa: resistance to the max. Front Microbiol 2:65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morita Y, Tomida J, Kawamura Y (2014) Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 4:422

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lambert P (2002) Mechanisms of antibiotic resistance in Pseudomonas aeruginosa. J R Soc Med 95:22–26

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chapman JS (2003) Biocide resistance mechanisms. Int Biodeterior Biodegrad 51:133–138

    Article  CAS  Google Scholar 

  7. Khalaj A, Adibpour N, Shahverdi AR, Daneshtalab M (2004) Synthesis and antibacterial activity of 2-(4-substituted phenyl)-3(2H)-isothiazolones. Eur J Med Chem 39:699–705

    Article  CAS  PubMed  Google Scholar 

  8. Pucci MJ, Podos SD, Thanassi JA, Leggio MJ, Bradbury BJ, Deshpande M (2011) In vitro and in vivo profiles of ACH-702, an isothiazoloquinolone, against bacterial pathogens. Antimicrob Agents Chemother 55:2860–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vicentini CB, Romagnoli C, Manfredini S, Rossi D, Mares D (2011) Pyrazolo [3,4-c]isothiazole and isothiazolo [4,3-d]isoxazole derivatives as antifungal agents. Pharm Biol 49:545–552

    Article  CAS  PubMed  Google Scholar 

  10. Xu FL, Lin Q, Hou BR (2009) Synthesis and bioactivity of novel benzisothiazolone derivatives as potential microbiocides. J Heterocycl Chem 46:320–323

    Article  CAS  Google Scholar 

  11. Collier PJ, Ramsey A, Waigh RD, Douglas KT, Austin P, Gilbert P (1990) Chemical reactivity of some isothiazolone biocides. J Appl Microbiol 69:578–584

    CAS  Google Scholar 

  12. Williams TM (2007) The mechanism of action of isothiazolone biocide. Power Plant Chem 9:14–22

    CAS  Google Scholar 

  13. Collier PJ, Austin P, Gilbert P (1991) Isothiazolone biocides: enzyme-inhibiting pro-drugs. Int J Pharm 74:195–201

    Article  CAS  Google Scholar 

  14. Stimson L, Rowlands MG, Newbatt YM, Smith NF, Raynaud FI, Rogers P, Bavetsias V, Gorsuch S, Jarman M, Bannister A, Kouzarides T, McDonald E, Workman P, Aherne GW (2005) Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol Cancer Ther 4:1521–1532

    Article  CAS  PubMed  Google Scholar 

  15. Dekker FJ, Ghizzoni M, van der Meer N, Wisastra R, Haisma HJ (2009) Inhibition of the PCAF histone acetyl transferase and cell proliferation by isothiazolones. Bioorg Med Chem 17:460–466

    Article  CAS  PubMed  Google Scholar 

  16. Furdas SD, Shekfeh S, Bissinger E-M, Wagner JM, Schlimme S, Valkov V, Hendzel M, Jung M, Sippl W (2011) Synthesis and biological testing of novel pyridoisothiazolones as histone acetyltransferase inhibitors. Bioorg Med Chem 19:3678–3689

    Article  CAS  PubMed  Google Scholar 

  17. El Abdellaoui H, Varaprasad CVNS, Barawkar D, Chakravarty S, Maderna A, Tam R, Chen HM, Allan M, Wu JZ, Appleby T, Yan SQ, Zhang WJ, Lang S, Yao NH, Hamatake R, Hong Z (2006) Identification of isothiazole-4-carboxamidines derivatives as a novel class of allosteric MEK1 inhibitors. Bioorg Med Chem Lett 16:5561–5566

    Article  PubMed  Google Scholar 

  18. Lippa B, Morris J, Corbett M, Kwan TA, Noe MC, Snow SL, Gant TG, Mangiaracina M, Coffey HA, Foster B, Knauth EA, Wessel MD (2006) Discovery of novel isothiazole inhibitors of the TrkA kinase: structure-activity relationship, computer modeling, optimization, and identification of highly potent antagonists. Bioorg Med Chem Lett 16:3444–3448

    Article  CAS  PubMed  Google Scholar 

  19. Reddy BM, Tanneeru K, Meetei PA, Guruprasad L (2011) 3D-QSAR and molecular docking studies on substituted isothiazole analogs as inhibitors against MEK-1 kinase. Chem Biol Drug Des 79:84–91

    Article  PubMed  Google Scholar 

  20. Cheng JJ, Thanassi JA, Thoma CL, Bradbury BJ, Deshpande M, Pucci MJ (2007) Dual targeting of DNA gyrase and topoisomerase IV: target interactions of heteroaryl isothiazolones in Staphylococcus aureus. Antimicrob Agents Chemother 51:2445–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. King A, Lodola A, Carmi C, Fu J, Mor M, Piomelli D (2009) A critical cysteine residue in monoacylglycerol lipase is targeted by a new class of isothiazolinone-based enzyme inhibitors. Br J Pharmacol 157:974–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yan SQ, Appleby T, Gunic E, Shim JH, Tasu T, Kim H, Rong F, Chen HM, Hamatake R, Wu JZ, Hong Z, Yao NH (2007) Isothiazoles as active-site inhibitors of HCVNS5B polymerase. Bioorg Med Chem Lett 17:28–33

    Article  CAS  PubMed  Google Scholar 

  23. Gedi V, Moon JY, Lim WM, Lee MY, Lee SC, Koo BS, Govindwar S, Yoon MY (2011) Identification and characterization of inhibitors of Haemophilus influenzae acetohydroxyacid synthase. Enzyme Microb Technol 49:1–5

    Article  CAS  PubMed  Google Scholar 

  24. Brözel VS, Cloete TE (1994) Resistance of Pseudomonas aeruginosa to isothiazolone. J Appl Bacteriol 76:576–582

    Article  PubMed  Google Scholar 

  25. Chen Y-C, Xie X-B, Shi Q-S, Ouyang Y-S, Chen Y-B (2010) Species identification of industry spoilage microorganism and the resistance analysis. Microbiol China 37:1558–1565

    Google Scholar 

  26. Zhou G, Shi Q, Huang X, Xie X, Chen Y (2015) Insights into Pseudomonas aeruginosa ATCC9027 resistance to isothiazolones through proteomics. Microb Drug Resist 21:140–148

    Article  CAS  PubMed  Google Scholar 

  27. Croucher NJ, Thomson NR (2010) Studying bacterial transcriptomes using RNA-seq. Curr Opin Microbiol 13:619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pinto A, Melo-Barbosa H, Miyoshi A, Silva A, Azevedo V (2011) Application of RNA-seq to reveal the transcript profile in bacteria. Genet Mol Res 10:1707–1718

    Article  CAS  PubMed  Google Scholar 

  29. Howard-Flanders P, Theriot L (1966) Mutants of Escherichia coli K-12 defective in DNA repair and in genetic recombination. Genetics 53:1137–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou G, Shi Q, Ouyang Y, Chen Y (2014) Involvement of outer membrane proteins and peroxide-sensor genes in Burkholderia cepacia resistance to isothiazolone. World J Microbiol Biotechnol 30:1251–1260

    Article  CAS  PubMed  Google Scholar 

  31. Chapman JS, Diehl MA (1995) Methylchloroisothiazolone-induced growth inhibition and lethality in Escherichia coli. J Appl Microbiol 78:134–141

    CAS  Google Scholar 

  32. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38:1767–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, pp 138–148

  35. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  36. Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  38. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G (2004) GO:TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20:3710–3715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  41. Essar D, Eberly L, Hadero A, Crawford I (1990) Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    CAS  PubMed  Google Scholar 

  43. Chapman JS, Diehl MA, Fearnside KB (1998) Preservative tolerance and resistance. Int J Cosmet Sci 20:31–39

    Article  CAS  PubMed  Google Scholar 

  44. Gusarov I, Shatalin K, Starodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. McCollister BD, Hoffman M, Husain M, Vázquez-Torres A (2011) Nitric oxide protects bacteria from aminoglycosides by blocking the energy-dependent phases of drug uptake. Antimicrob Agents Chemother 55:2189–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dadi PK, Ahmad M, Ahmad Z (2009) Inhibition of ATPase activity of Escherichia coli ATP synthase by polyphenols. Int J Biol Macromol 45:72–79

    Article  CAS  PubMed  Google Scholar 

  47. Dairaku N, Kato K, Honda K, Koike T, Iijima K, Imatani A, Sekine H, Ohara S, Matsui H, Shimosegawa T (2004) Oligomycin and antimycin A prevent nitric oxide-induced apoptosis by blocking cytochrome C leakage. J Lab Clin Med 143:143–151

    Article  CAS  PubMed  Google Scholar 

  48. Potter VR, Reif AE (1952) Inhibition of an electron transport component by antimycin A. J Biol Chem 194:287–297

    CAS  PubMed  Google Scholar 

  49. Chuanchuen R, Karkhoff-Schweizer RR, Schweizer HP (2003) High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am J Infect Control 31:124–127

    Article  PubMed  Google Scholar 

  50. Mima T, Joshi S, Gomez-Escalada M, Schweizer HP (2007) Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J Bacteriol 189:7600–7609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114

    Article  CAS  PubMed  Google Scholar 

  52. Hoang TT, Schweizer HP (1999) Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J Bacteriol 181:5489–5497

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu L, Lin J, Ma J, Cronan JE, Wang H (2010) Triclosan resistance of Pseudomonas aeruginosa PAO1 is due to FabV, a triclosan-resistant enoyl-acyl carrier protein reductase. Antimicrob Agents Chemother 54:689–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chuanchuen R, Beinlich K, Hoang TT, Becher A, Karkhoff-Schweizer RR, Schweizer HP (2001) Cross-Resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ. Antimicrob Agents Chemother 45:428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fukuda H, Hosaka M, Hirai K, Iyobe S (1990) New norfloxacin resistance gene in Pseudomonas aeruginosa PAO. Antimicrob Agents Chemother 34:1757–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kohler T, Michea-Hamzehpour M, Henze U, Gotoh N, Curty LK, Pechere JC (1997) Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol Microbiol 23:345–354

    Article  CAS  PubMed  Google Scholar 

  57. Li X-Z, Poole K, Nikaido H (2003) Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob Agents Chemother 47:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sobel ML, Neshat S, Poole K (2005) Mutations in PA2491 (mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J Bacteriol 187:1246–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morita Y, Tomida J, Kawamura Y (2015) Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon. Front Microbiol 6:8

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hassett DJ, Charniga L, Bean K, Ohman DE, Cohen MS (1992) Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase. Infect Immun 60:328–336

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS (2001) Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61:1308–1321

    Article  CAS  PubMed  Google Scholar 

  63. Muller M, Merrett ND (2014) Pyocyanin production by Pseudomonas aeruginosa confers resistance to ionic silver. Antimicrob Agents Chemother 58:5492–5499

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial supports were provided by the National Natural Science Foundation of China (No. 31500036), Natural Science Foundation of Guangdong Province (No. 2015A030313713), Cooperation Projects of Foshan City and Chinese Academy (No. 2012HY100115) and Jieyang Cooperation Projects of Industry-University-Research (No. 201429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-shan Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Shi, Qs., Huang, Xm. et al. Comparison of transcriptomes of wild-type and isothiazolone-resistant Pseudomonas aeruginosa by using RNA-seq. Mol Biol Rep 43, 527–540 (2016). https://doi.org/10.1007/s11033-016-3978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3978-y

Keywords

Navigation