Skip to main content
Log in

In silico analysis of Mn transporters (NRAMP1) in various plant species

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Manganese (Mn) is an essential micronutrient in plant life cycle. It may be involved in photosynthesis, carbohydrate and lipid biosynthesis, and oxidative stress protection. Mn deficiency inhibits the plant growth and development, and causes the various plant symptoms such as interveinal chlorosis and tissue necrosis. Despite its importance in plant life cycle, we still have limited knowledge about Mn transporters in many plant species. Therefore, this study aimed to identify and characterize high affinity Arabidopsis Mn root transporter NRAMP1 orthologs in 17 different plant species. Various in silico methods and digital gene expression data were used in identification and characterization of NRAMP1 homologs; physico-chemical properties of sequences were calculated, putative transmembrane domains (TMDs) and conserved motif signatures were determined, phylogenetic tree was constructed, 3D models and interactome map were generated, and gene expression data was analyzed. 49 NRAMP1 homologs were identified from proteome datasets of 17 plant species using AtNRAMP1 as query. Identified sequences were characterized with a NRAMP domain structure, 10–12 putative TMDs with cytosolic N- and C-terminuses, and 10–14 exons encoding a protein of 500-588 amino acids and 53.8–64.3 kDa molecular weight with basic characteristics. Consensus transport residues, GQSSTITGTYAGQY(/F)V(/I)MQGFLD(/E/N) between TMD-8 and 9 were identified in all sequences but putative N-linked glycosylation sites were not highly conserved. In phylogeny, NRAMP1 sequences demonstrated divergence in lower and higher plants as well as in monocots and dicots. Despite divergence of lower plant Physcomitrella patens in phylogeny, it showed similarity in superposed 3D models. Phylogenetic distribution of AtNRAMP1 and 6 homologs inferred a functional relationship to NRAMP6 sequences in Mn transport, while distribution of OsNRAMP1 and 5 homologs implicated an involvement of NRAMP1 sequences in Mn transport or a cross-talk between in Fe–Mn homeostasis. Interactome analysis further confirmed this cross-talk between Mn and Fe pathways. Gene expression profile of AtNRAMP1 under Fe-, K-, P- and S-deficiencies, and cold, drought, heat and salt stresses revealed various proteins involving in transcription regulation, cofactor biosynthesis, diverse developmental roles, carbohydrate metabolism, oxidation–reduction reactions, cellular signaling and protein degradation pathways. Mn deficiency or toxicity could cause serious adverse effects in plants as well as in humans. To reduce these adversities mainly rely on understanding the molecular mechanisms underlying Mn uptake from the soil. However, we still have limited knowledge regarding the structural and functional roles of Mn transporters in many plant species. Therefore, identification and characterization of Mn root uptake transporter, NRAMP1 orthologs in various plant species will provide valuable theoretical knowledge to better understand Mn transporters as well as it may become an insight for future studies aiming to develop genetically engineered and biofortified plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jiang W (2006) Mn use efficiency in different wheat cultivars. Environ Exp Bot 57:41–50

    Article  CAS  Google Scholar 

  2. Marschner P (2012) Marschner’s mineral nutrition of higher plants. Academic Press, Boston

    Google Scholar 

  3. Yanykin DV, Khorobrykh AA, Khorobrykh SA, Klimov VV (2010) Photo consumption of molecular oxygen on both donor and acceptor sides of photosystem II in Mn-depleted subchloroplast membrane fragments. Biochim Biophys Acta 1797:516–523

    Article  CAS  PubMed  Google Scholar 

  4. Nickelsen J, Rengstl B (2013) Photosystem II assembly: from cyanobacteria to plants. Annu Rev Plant Biol 64:609–635

    Article  CAS  PubMed  Google Scholar 

  5. Socha AL, Guerinot ML (2014) Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Front Plant Sci 5:106

    Article  PubMed Central  PubMed  Google Scholar 

  6. Cailliatte R, Schikora A, Briat JF, Mari S, Curie C (2010) High- affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Thomine S, Lelievre F, Debarbieux E, Schroeder JI, Barbier-Brygoo H (2003) AtNRAMP3, a multi specific vacuolar metal transporter involved in plant responses to iron deficiency. Plant J 34:685–695

    Article  CAS  PubMed  Google Scholar 

  8. Lanquar V, Ramos MS, Lelievre F, Barbier-Brygoo H, Krieger-Liszkay A, Kramer U et al (2010) Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiol 152:1986–1999

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Yamaji N, Sasaki A, Xia JX, Yokosho K, Ma JF (2013) Anode-based switch for preferential distribution of manganese in rice. Nat Commun 4:2442

    Article  PubMed  Google Scholar 

  10. Sasaki A, Yamaji N, Yokosho K, Ma JF (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell Online 24:2155–2167

    Article  CAS  Google Scholar 

  11. Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S et al (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39:415–424

    Article  CAS  PubMed  Google Scholar 

  12. Sasaki A, Yamaji N, Xia J, Ma JF (2011) OsYSL6 is involved in the detoxification of excess manganese in rice. Plant Physiol 157:1832–1840

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Conte SS, Chu HH, Rodriguez DC, Punshon T, Vasques KA, Salt DE et al (2013) Arabidopsis thaliana Yellow Stripe1-Like4 and YellowStripe1- Like6 localize to internal cellular membranes and are involved in metal ion homeostasis. Front Plant Sci 4:283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Yang TJ, Perry PJ, Ciani S, Pandian S, Schmidt W (2008) Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. J Exp Bot 59:3453–3464

    Article  CAS  PubMed  Google Scholar 

  15. Milner MJ, Seamon J, Craft E, Kochian LV (2013) Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64:369–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Marshall J, Corzo A, Leigh RA, Sanders D (1994) Membrane potential dependent calcium transport in right-side-out plasma membrane vesicles from Zea mays L. roots. Plant J 5:683–694

    Article  CAS  Google Scholar 

  17. Wymer CL, Bibikova TN, Gilroy S (1997) Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana. Plant J 12:427–439

    Article  CAS  PubMed  Google Scholar 

  18. Cellier M, Prive G, Belouchi A, Kwan T, Rodrigues V, Chia W et al (1995) Nramp defines a family of membrane proteins. Proc Natl Acad Sci USA 92:10089–10093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Curie C, Alonso J, Le Jean M, Ecker J, Briat J (2000) Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Romiti M (2010) Entrez nucleotide and entrez protein FAQs. Gene 1:270

    Google Scholar 

  22. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD et al (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana, Louisville, pp 571–607

    Chapter  Google Scholar 

  24. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  CAS  PubMed  Google Scholar 

  25. Sonnhammer EL, Eddy SR, Durbin R (1997) Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 28:405–420

    Article  CAS  PubMed  Google Scholar 

  26. Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A (2008) Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci 105:7177–7181

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Guo AY, Zhu QH, Chen X, Luo JC (2007) [GSDS: a gene structure display server]. Yi chuan = Hereditas/Zhongguo yi chuan xue hui bian ji 29:1023–1026

  28. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hall T (2011) BioEdit: an important software for molecular biology. GERF Bull Biosci 2:60–61

    Google Scholar 

  30. Timothy L, Mikael B, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:202–208

    Article  Google Scholar 

  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  CAS  PubMed  Google Scholar 

  33. DeLano WL (2002) The PyMOL molecular graphics system

  34. Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG et al (2003) Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 50:437–450

    Article  CAS  PubMed  Google Scholar 

  35. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  36. Nguyen MN, Tan KP, Madhusudhan MS (2011) CLICK—topology-independent comparison of biomolecular 3D structures. Nucleic Acids Res 39:W24–W28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A et al (2013) STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Xiao H, Yin L, Xu X, Li T, Han Z (2008) The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking. Ann Bot 102:881–889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Oomen RJ, Wu J, Lelievre F, Blanchet S, Richaud P, Barbier-Brygoo H et al (2009) Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol 181:637–650

    Article  CAS  PubMed  Google Scholar 

  41. Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and theirNi2+ transportabilities. Plant Physiol Biochem 431:793–801

    Article  Google Scholar 

  42. Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of NRAMP and IRT metal transporter genes in wild Type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704

    Article  CAS  PubMed  Google Scholar 

  43. Kaiser BN, Moreau S, Castelli J, Thomson R, Lambert A, Bogliolo S et al (2003) The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport. Plant J 35:295–304

    Article  CAS  PubMed  Google Scholar 

  44. Supek F, Supekova L, Nelson H, Nelson N (1996) A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc Natl Acad Sci USA 93:5105–5110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Ann Rev Plant Biol 63:131–152

    Article  CAS  Google Scholar 

  46. Vert G, Barberon M, Zelazny E, Séguéla M, Briat JF, Curie C (2009) Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229:1171–1179

    Article  CAS  PubMed  Google Scholar 

  47. Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190

    Article  CAS  PubMed  Google Scholar 

  48. Wu H, Li L, Du J, Yuan Y, Cheng X, Ling HQ (2005) Molecular and biochemical characterization of the Fe(III) chelate reductase gene family in Arabidopsis thaliana. Plant Cell Physiol 46:1505–1514

    Article  CAS  PubMed  Google Scholar 

  49. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  PubMed  Google Scholar 

  50. Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N et al (2009) The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21:3326–3338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Liang F, Cunningham KW, Harper JF, Sze H (1997) ECA1 complements yeast mutants defective in Ca2+ pumps and encodes an endoplasmic reticulum-type Ca2+-ATPase in Arabidopsis thaliana. Proc Natl Acad Sci 94:8579–8584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Tognolli M, Penel C, Greppin H, Simon P (2002) Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene 288:129–138

    Article  CAS  PubMed  Google Scholar 

  53. Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  54. Ciftci-Yilmaz S, Mittler R (2008) The zinc finger network of plants. Cell Mol Life Sci 65:1150–1160

    Article  CAS  PubMed  Google Scholar 

  55. Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G et al (2006) The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol 60:107–124

    Article  PubMed  Google Scholar 

  56. Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    Article  CAS  PubMed  Google Scholar 

  57. Alves MS, Dadalto SP, Gonçalves AB, De Souza GB, Barros VA, Fietto LG (2013) Plant bZIP transcription factors responsive to pathogens: a review. Int J Mol Sci 14:7815–7828

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Ilker Ozyigit.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6,847 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vatansever, R., Filiz, E. & Ozyigit, I.I. In silico analysis of Mn transporters (NRAMP1) in various plant species. Mol Biol Rep 43, 151–163 (2016). https://doi.org/10.1007/s11033-016-3950-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-016-3950-x

Keywords

Navigation