Skip to main content
Log in

Metagenomic analysis of the gut microbiota of the Timber Rattlesnake, Crotalus horridus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Snakes are capable of surviving long periods without food. In this study we characterized the microbiota of a Timber Rattlesnake (Crotalus horridus), devoid of digesta, living in the wild. Pyrosequencing-based metagenomics were used to analyze phylogenetic and metabolic profiles with the aid of the MG-RAST server. Pyrosequencing of samples taken from the stomach, small intestine and colon yielded 691696, 957756 and 700419 high quality sequence reads. Taxonomic analysis of metagenomic reads indicated Eukarya was the most predominant domain, followed by bacteria and then viruses, for all three tissues. The most predominant phylum in the domain Bacteria was Proteobacteria for the tissues examined. Functional classifications by the subsystem database showed cluster-based subsystems were most predominant (10–15 %). Almost equally predominant (10–13 %) was carbohydrate metabolism. To identify bacteria in the colon at a finer taxonomic resolution, a 16S rRNA gene clone library was created. Proteobacteria was again found to be the most predominant phylum. The present study provides a baseline for understanding the microbial ecology of snakes living in the wild.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Clark RW (2002) Diet of the Timber Rattlesnake. J Herpetol 36:494–499

    Article  Google Scholar 

  2. Clark RW (2006) Fixed videography to study predation behavior of an ambush foraging snake, Crotalus horridus. Copeia 2006:181–187

    Article  Google Scholar 

  3. Reinert HK, MacGregor GA, Esch M, Bushar LM, Zappalorti RT (2011) Foraging ecology of timber rattlesnakes, Crotalus horridus. Copeia 2011:430–442

    Article  Google Scholar 

  4. Wittenberg RD (2012) Foraging ecology of the timber rattlesnake (Crotalus horridus) in a fragmented agricultural landscape. Herpetol Conserv Biol 7:449–461

    Google Scholar 

  5. Beaupre SJ, Zaidan F 3rd (2012) Digestive performance in the timber rattlesnake (Crotalus horridus) with reference to temperature dependence and bioenergetics cost of growth. J Herpetol 46:637–642

    Article  Google Scholar 

  6. Dethlefsen L, Eckburg PB, Bik EM, Relman DA (2006) Assembly of the human intestinal microbiota. Trends Ecol Evol 21:517–523

    Article  PubMed  Google Scholar 

  7. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  CAS  PubMed  Google Scholar 

  8. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK, Hammer RE, Williams SC, Crowley J, Yanagisawa M, Gordon JI (2008) Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 105:16767–16772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI (2009) A core gut microbiome in obese and lean twins. Nature 457:480–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  12. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    Article  PubMed Central  PubMed  Google Scholar 

  13. Crawford PA, Crowley JR, Sambandam N, Muegge BD, Costello EK, Hamady M, Knight R, Gordon JI (2009) Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation. Proc Natl Acad Sci USA 106:11276–11281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Klein S, Cohn MD, Alpers DH (1998) Alimentary tract in nutrition. In: Shils ME, Olson JA, Shike M, Ross AC (eds) Modern nutrition in health and disease. Williams & Wilkins, Baltimore, p 1140

    Google Scholar 

  15. Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, Desantis TZ, Brodie EL, Malamud D, Poles MA, Pei Z (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 16:4135–4144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ruemmele FM, Bier D, Marteau P, Rechkemmer G, Bourdet-Sicard R, Walker WA, Goulet O (2009) Clinical evidence for immunomodulatory effects of probiotic bacteria. J Pediatr Gastroenterol Nutr 48:126–141

    Article  CAS  PubMed  Google Scholar 

  17. Serban DE (2011) The gut microbiota in the metagenomics era: sometimes a friend, sometimes a foe. Roum Arch Microbiol Immunol 70:134–140

    PubMed  Google Scholar 

  18. Beaupre SJ (1996) Field metabolic rate, water flux, and energy budgets of mottled rock rattlesnakes, Crotalus lepidus, from populations. Copeia 1996:319–329

    Article  Google Scholar 

  19. Beaupre SJ (2002) Modeling time-energy allocation in vipers: individual responses to environmental variation and implications for populations. In: Schuett GW, Höggren MR, Douglas ME, Greene HW (eds) The biology of vipers. Eagle Mountain Publishing, LC, Eagle Mountain, pp 463–480

    Google Scholar 

  20. Hill JG III, Hanning I, Beaupre SJ, Ricke SC, Slavik MM (2008) Denaturing gradient gel electrophoresis for the determination of bacterial species diversity in the gastrointestinal tracts of two crotaline snakes. Herpetol Rev 39:433–438

    Google Scholar 

  21. Costello EK, Gordon JI, Secor SM, Knight R (2010) Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J 4:1375–1385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Meyer F, Paarmann D, D’souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Rawls JF, Mahowald A, Ley E, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127:423–433

    Article  CAS  PubMed  Google Scholar 

  27. Roseslers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF (2011) Evidence for a core gut microbiota in zebrafish. ISME J 5:1995–1996

    Google Scholar 

  28. García-Amado MA, Godoy-Vitorino F, Piceno YM, Tom LM, Andersen GL, Herrera EA, Domínguez-Bello MG (2012) Bacterial diversity in the cecum of the world’s largest living rodent (Hydrochoerus hydrochaeris). Microb Ecol 63:719–725

    Article  PubMed  Google Scholar 

  29. Xenoulis PG, Gray PL, Brightsmith D, Palculict B, Hoppes S, Steiner JM, Tizard I, Suchodolski JS (2010) Molecular characterization of the cloacal microbiota of wild and captive parrots. Vet Microbiol 146:320–325

    Article  CAS  PubMed  Google Scholar 

  30. Lentle RG, Dey D, Hulls C, Mellor DJ, Moughan PJ, Stafford KJ, Nicholas K (2006) A quantitative study of the morphological development and bacterial colonisation of the gut of the tammar wallaby Macropus eugenii eugenii and brushtail possum Trichosurus vulpecula during in-pouch development. J Comp Physiol B 176:763–774

    Article  CAS  PubMed  Google Scholar 

  31. Whitaker JO Jr, Hamilton WJ Jr (1998) Mammals of the eastern United States, 3rd edn. Comstock Publishing Associates, Cornell University Press, Ithaca, p 583

    Google Scholar 

  32. Glad T, Kristiansen VF, Nielsen KM, Brusetti L, Wright AD, Sundset MA (2010) Ecological characterisation of the colonic microbiota in arctic and sub-arctic seals. Microbiol Ecol 60:320–330

    Article  CAS  Google Scholar 

  33. Ritchie LE, Steiner JM, Suchodolski JS (2008) Assessment of microbial diversity along the feline intestinal tract using 16S rRNA gene analysis. FEMS Microbiol Ecol 66:590–598

    Article  CAS  PubMed  Google Scholar 

  34. Suchodolski JS, Camacho J, Steiner JM (2008) Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis. FEMS Microbiol Ecol 66:567–578

    Article  CAS  PubMed  Google Scholar 

  35. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Cohen ML, Potter M, Pollard R (1980) Turtle-associated salmonellosis in the United States, effect of public health action, 1970 to 1976. JAMA 243:1247–1249

    Article  CAS  PubMed  Google Scholar 

  37. Mermin J, Hoar B, Angulo FJ (1997) Iguanas and Salmonella marina infection in children: a reflection of the increasing incidence of reptile-associated salmonellosis in the United States. Pediatrics 99:399–402

    Article  CAS  PubMed  Google Scholar 

  38. Waterman SH, Juarez G, Carr SJ, Kilman L (1990) Salmonella arizonae infections in Latinos associated with rattlesnake folk medicine. Am J Public Health 80:286–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Schroter M, Roggentin P, Hofmann J, Speicher A, Laufs R, Mack D (2004) Pet snakes as a reservoir for Salmonella enterica subsp. diarizonae (Serogroup IIIb): a prospective study. Appl Environ Microbiol 70:613–615

    Article  PubMed Central  PubMed  Google Scholar 

  40. Grupka LM, Ramsay EC, Bemis DA (2006) Salmonella surveillance in a collection of rattlesnakes (Crotalus spp.). J Zoo Wildl Med 37:306–312

    Article  PubMed  Google Scholar 

  41. CDC (2011) National Salmonella surveillance overview. US Department of Health and Human Services, CDC, Atlanta

    Google Scholar 

  42. Ramsay EC, Daniel GB, Tryon BW, Merryman JI, Morris PJ, Bemis DA (2002) Osteomyelitis associated with Salmonella enterica SS arizonae in a colony of ridgenose rattlesnakes (Crotalus willardi). J Zoo Wildl Med 33:301–310

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Bryan Albrecht, Zina Haywood, Stephanie Sklba, Bernard O’Connell, Donald Zakutansky and Jennifer Charpentier for their enthusiastic support of this research. This project was supported by funding provided by Gateway Technical College and by the Gateway Foundation, through its Inspiration Grant Program. Access to the Timber Rattlesnake specimen was authorized through a permit from the Minnesota Department of Natural Resources to PAC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard William McLaughlin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 690 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLaughlin, R.W., Cochran, P.A. & Dowd, S.E. Metagenomic analysis of the gut microbiota of the Timber Rattlesnake, Crotalus horridus . Mol Biol Rep 42, 1187–1195 (2015). https://doi.org/10.1007/s11033-015-3854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-015-3854-1

Keywords

Navigation