Skip to main content
Log in

Transcriptome-wide identification of the genes responding to replanting disease in Rehmannia glutinosa L. roots

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The development of the medicinal plant Rehmannia glutinosa L. are severely declined when are replanted on the soil of the preceding crops being themselves. The biological basis of this so called “replanting disease” is unknown. Here, we have exploited the parallel sequencing capacity of both RNA-seq and DGE technology to ascertain what genes are responsive to the replanting disease in roots of R. glutinosa. RNA-seq analysis generated 99,708 non-redundant consensus sequences from the roots of the first year (R1) and the second year (R2) replanted R. glutinosa plants. From this set, a total of 48,616 transcripts containing a complete or partial encoding region was identified. Based on this resource, two DGE tag libraries were established to capture the transcriptome differences between the R1 and R2 libraries. Finally, a set of 2,817 (1,676 up- and 1,141 down-regulated) differentially transcribed genes was screened, and 114 most strongly differentially transcribed genes were identified by DGE analysis between first year and replanted plants. Furthermore, a more detailed examination of 16 selected candidates was carried out by qRT-PCR. The indication was that replanting could promote Ca2+ signal transduction and ethylene synthesis, resulting in forming of the replanting disease. We analyzed the biomass indexes of replanted R. glutinosa roots by irrigating Ca2+ signal blockers. The results suggested that the alleviation of the disease impairment could be the decrease of Ca2+ signal transduction. This study provided a global survey of the root transcriptome in replanted R. glutinosa roots at the tuberous root expansion stage. As a result, a number of candidate genes underlying the replanting disease have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wen XS, Yang SL, Wei JH, Zheng JH (2002) Textual research on planting history of Rehmannia glutinosa and its cultivated varieties. Chin Tradit Herb Drugs 33:946–949 (in Chinese)

    Google Scholar 

  2. Utkhede RS (2006) Soil sickness, replant problem or replanting disease and its integrated control. Allelopath J 18:23–38

    Google Scholar 

  3. Yu FP, Yang L (1994) Preliminary study of Rehmannia mosaic virus. Acta Phytopathol Sin 24:310 (in Chinese)

    Google Scholar 

  4. Li XE, Chen SL, Wei SQ, Wei JH, Lan J (2006) Analysis on adaptive area of Rehmannia glutinosa L. and it’s class partition. China J Chin Mater Med 31:344–346 (in Chinese)

    CAS  Google Scholar 

  5. Du JF, Yin WJ, Zhang ZY, Hou J, Huang J, Li J (2009) Autotoxicity and phenolic acids content in soils with different planting interval years of Rehmannia glutinosa. Chin J Ecol 28:445–450 (in Chinese)

    CAS  Google Scholar 

  6. Wu ZW, Wang MD, Liu XY, Chen HG, Jia XC (2009) Phenolic compounds accumulation in continuously cropped Rehmannia glutinosa soil and their effects on R. glutinosa growth. Chin J Ecol 28:660–664 (in Chinese)

    Google Scholar 

  7. Yin WJ, Du JF, Li J, Zhang ZY (2009) Effects of continuous cropping obstacle on growth of Rehmannia glutinosa. China J Chin Mater Med 34:18–21 (in Chinese)

    Google Scholar 

  8. Yang Y, Chen X, Chen J, Xu H, Li J, Zhang Z (2011) Differential miRNA expression in Rehmannia glutinosa plants subjected to continuous cropping. BMC Plant Biol. doi:10.1186/1471-2229-11-53

    Google Scholar 

  9. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  CAS  PubMed  Google Scholar 

  10. Wang QQ, Fei L, Chen XS, Ma JX, Zeng QH, Yang ZM (2010) Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant. Genomics 96:369–376

    Article  CAS  PubMed  Google Scholar 

  11. Xiang LX, Ding H, Dong WR, Zhang YW, Shao JZ (2010) Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant in marine fish. BMC Genom 11:472–492

    Article  Google Scholar 

  12. Wu N, Matand K, Wu H, Li B, Li Y, Zhang X, He Z, Qian J, Liu X, Conley S, Bailey M, Acquaah G (2013) De novo next-generation sequencing, assembling and annotation of Arachis hypogaea L. Spanish botanical type whole plant transcriptome. Theor Appl Genet. doi:10.1007/s00122-013-2042-8

  13. Xia Z, Xu H, Zhai J, Li D, Luo H, Huang X (2011) RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis. Plant Mol Biol 77:299–308

    Article  CAS  PubMed  Google Scholar 

  14. Yan X, Dong C, Yu J, Liu W, Jiang C, Liu J, Hu Q, Fang X, Wei W (2013) Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus. BMC Genom. doi:10.1186/1471-2164-14-29

    Google Scholar 

  15. Dang ZH, Zheng LL, Wang J, Gao Z, Wu SB, Qi Z, Wang YC (2013) Transcriptomic profiling of the salt-stress response in the wild recretohalophyte Reaumuria trigyna. BMC Genom. doi:10.1186/1471-2164-14-29

    Google Scholar 

  16. Gai S, Zhang Y, Mu P, Liu C, Liu S, Dong L, Zheng G (2012) Transcriptome analysis of tree peony during chilling requirement fulfillment: assembling, annotation and markers discovering. Gene 497:256–262

    Article  CAS  PubMed  Google Scholar 

  17. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wrold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  18. Xu Q, Morgan RD, Roberts RJ, Xu SY, van Doorn LJ, Donahue JP, Miller GG, Blaser MJ (2002) Functional analysis of iceA1, a CATG-recognizing restriction endonuclease gene in Helicobacter pylori. Nucleic Acids Res 30:3839–3847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Li YJ, Fu YR, Huang JG, Wu CA, Zheng CC (2011) Transcript profiling during the early development of the maize brace root via Solexa sequencing. FEBS J 278:156–166

    Article  CAS  PubMed  Google Scholar 

  20. Li R, Yu C, Li Y, Lam TW, Yiu SM et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  21. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucl Acids Res 34:W293–W297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 1999:138–148

    Google Scholar 

  23. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M et al (2008) KEGG for linking genomes to life and the environment. Nucl Acids Res 36:D480–D484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Ye J, McGinnis S, Madden TL (2006) BLAST: improvements for better sequence analysis. Nucl Acids Res 34:W6–W9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucl Acids Res 28:33–36

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  27. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    CAS  PubMed  Google Scholar 

  28. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false is dicovery rate in behavior genetics research. Behav Brain Res 125:279–284

    Article  CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C (T)). Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  30. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  CAS  PubMed  Google Scholar 

  31. Levin JZ, Berger MF, Adiconis X, Rogov P, Melnikov A, Fennell T, Nusbaum C, Garraway LA, Gnirke A (2009) Targeted next-generation sequencing of a cancer transcriptome enhances detection of sequence variants and novel fusion transcripts. Genome Biol 10:R115

    Article  PubMed Central  PubMed  Google Scholar 

  32. Asmann YW, Klee EW, Thompson EA, Perez EA, Middha S et al (2009) 3′ tag digital gene expression profiling of human brain and universal reference RNA using Illumina Genome Analyzer. BMC Genom. doi:10.1186/1471-2164-10-531

    Google Scholar 

  33. Wang Y, Brahmakshatriya V, Zhu H, Lupiani B, Reddy SM et al (2009) Identification of differentially expressed miRNAs in chicken lung and trachea with avian influenza virus infection by a deep sequencing approach. BMC Genom. doi:10.1186/1471-2164-10-512

    Google Scholar 

  34. Tang F, Barbacioru C, Nordman E, Li B, Xu N, Bashkirov VI, Lao K, Surani MA (2010) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 5:516–535

    Article  CAS  PubMed  Google Scholar 

  35. Zhang G, Guo G, Hu X, Zhang Y, Li Q et al (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20:646–654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. David JP, Coissac E, Melodelima C, Poupardin R, Riaz MA, Chandor-Proust A, Reynaud S (2010) Transcriptome response to pollutants and insecticides in the dengue vector Aedes aegypti using next-generation sequencing technology. BMC Genom. doi:10.1186/1471-2164-11-216

    Google Scholar 

  37. Veitch NJ, Johnson PC, Trivedi U, Terry S, Wildridge D, MacLeod A (2010) Digital gene expression analysis of two life cycle stages of the human-infective parasite, Trypanosoma brucei gambiense reveals differentially expressed clusters of co-regulated genes. BMC Genom 11:124–137

    Article  Google Scholar 

  38. Fizames C, Munos S, Cazettes C, Nacry P, Boucherez J et al (2004) The Arabidopsis root transcriptome by serial analysis of gene expression. Plant Physiol 134:67–80

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Clapham DE (2007) Calcium Signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  40. Kudla J, liver Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Drøbak BK, Ferguson IB (1985) Release of Ca2+ from plant hypocotyl microsomes by inositol-1,4,5-trisphosphate. Biochem Biophys Res Commun 130:1241–1246

    Article  PubMed  Google Scholar 

  42. Gilroy S, Read ND, Trewavas AJ (1990) Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature 346:769–771

    Article  CAS  PubMed  Google Scholar 

  43. Knight H (2000) Calcium signaling during abiotic stree in plants. Int Rev Cytol 195:269–324

    Article  CAS  PubMed  Google Scholar 

  44. Cholewa E, Peterson CA (2004) Evidence for symplastic involvement in the radial movement of calcium in onion roots. Plant Physiol 134:1793–1802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Boudsocq M, Lauriere C (2005) Osmotic signaling in plants: multiple pathways mediated by emerging kinase families. Plant Phsiol 138:1185–1194

    Article  CAS  Google Scholar 

  46. Weinl S, Kudla J (2009) The CBL–CIPK Ca(2+)-decoding signaling network: function and perspectives. New Phytol 184:517–528

    Article  CAS  PubMed  Google Scholar 

  47. Alvarez ME, Nota F, Cambiagno DA (2010) Epigenetic control of plant immunity. Mol Plant Pathol 11:563–576

    Article  CAS  PubMed  Google Scholar 

  48. Allen GJ, Sanders D (1995) Calcineurin, a type 2B protein phosphatase, modulates the Ca2+-permeable slow vacuolar ion channel of stomatal guard cells. Plant Cell 7:1473–1483

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Teets NM, Elnitsky MA, Benoit JB, Lopez-Martinez G, Denlinger DL, Lee RE Jr (2008) Rapid cold-hardening in larvae of the Antarctic midge Belgica antarctica: cellular cold-sensing and a role for calcium. Am J Physiol Regul Integr Comp Physiol 294:R1938–R1946

    Article  CAS  PubMed  Google Scholar 

  50. Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  CAS  PubMed  Google Scholar 

  52. Gehm BD, Mc Connell DG (1990) Phosphatidylinositol-4,5-bisphosphate phospholipase C in bovine rod outer segments. Biochemistry 29:5447–5452

    Article  CAS  PubMed  Google Scholar 

  53. Yang YH, Zhang ZY, Fang HM, Zhao YD, Li MJ, Li J, Chen JY, Lin WX, Chen XJ (2013) Construction and analysis of a different expression cDNA library in Rehmannia glutinosa plants subjected to continuous cropping. Acta Physiol plant 35:645–655

    Article  CAS  Google Scholar 

  54. Zhang Z, Fan H, Yang Y, Li M, Li J, Xu HX, Chen JY, Chen XJ (2011) Construction and analysis of suppression subtractive library of continuous cropping Rehmannia glutinosa Libosch. China J Chin Mater Med 36:276–280 (in Chinese)

    CAS  Google Scholar 

  55. Yu J, Sun Y, Zhang Y, Ding J, Xia X et al (2009) Selective trans-Cinnamic acid uptake impairs [Ca2+]cyt homeostasis and growth in Cucumis sativus L. J Chem Ecol 35:1471–1477

    Article  CAS  PubMed  Google Scholar 

  56. Chi WC, Fu SF, Huang TL, Chen YA, Chen CC, Huang HJ (2011) Identification of transcriptome profiles and signaling pathways for the allelochemical juglone in rice roots. Plant Mol Biol 77:591–607

    Article  CAS  PubMed  Google Scholar 

  57. Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  CAS  PubMed  Google Scholar 

  58. Schaller GE (2012) Ethylene and the regulation of plant development. BMC Biol 10:9–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Jourda C, Cardi C, Mbéguié-A-Mbéguié D, Bocs S, Garsmeur O, D’Hont A, Yahiaoui N (2014) Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications. New Phytol 202:986–1000

    Article  CAS  PubMed  Google Scholar 

  60. Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667–675

    Article  CAS  PubMed  Google Scholar 

  61. Yoshida H, Nagata M, Saito K, Wang KL, Ecker JR (2005) Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol. doi:10.1186/1471-2229-5-14

    PubMed Central  PubMed  Google Scholar 

  62. Böttcher C, Keyzers RA, Boss PK, Davies C (2010) Sequestration of auxin by the indole-3-acetic acid-amido synthetase GH3-1 in grape berry (Vitis vinifera L.) and the proposed role of auxin conjugation during ripening. J Exp Bot 61:3615–3625

    Article  PubMed  Google Scholar 

  63. Preston JC, Hileman LC (2010) SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes. Plant J 62:704–712

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Nos. 31271674, 81274022 and 81403037), the Science and Technology Research Key Project of Henan Educational Committee (No. 13A180160) and High-level Personnel Scientific Research Start-up Foundation of Henan University of Technology (No. 150512).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Jian Chen or Zhong Yi Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 703 kb)

Supplementary material 2 (DOC 1,136 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y.H., Li, M.J., Li, X.Y. et al. Transcriptome-wide identification of the genes responding to replanting disease in Rehmannia glutinosa L. roots. Mol Biol Rep 42, 881–892 (2015). https://doi.org/10.1007/s11033-014-3825-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3825-y

Keywords

Navigation