Skip to main content
Log in

Genome-wide identification and evolutionary analysis of algal LPAT genes involved in TAG biosynthesis using bioinformatic approaches

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lysophosphatidyl acyltransferase (LPAT) is one of the major triacylglycerol synthesis enzymes, controlling the metabolic flow of lysophosphatidic acid to phosphatidic acid. Experimental studies in Arabidopsis have shown that LPAT activity is exhibited primarily by three distinct isoforms, namely the plastid-located LPAT1, the endoplasmic reticulum-located LPAT2, and the soluble isoform of LPAT (solLPAT). In this study, 24 putative genes representing all LPAT isoforms were identified from the analysis of 11 complete genomes including green algae, red algae, diatoms and higher plants. We observed LPAT1 and solLPAT genes to be ubiquitously present in nearly all genomes examined, whereas LPAT2 genes to have evolved more recently in the plant lineage. Phylogenetic analysis indicated that LPAT1, LPAT2 and solLPAT have convergently evolved through separate evolutionary paths and belong to three different gene families, which was further evidenced by their wide divergence at gene structure and sequence level. The genome distribution supports the hypothesis that each gene encoding a LPAT is not duplicated. Mapping of exon–intron structure of LPAT genes to the domain structure of proteins across different algal and plant species indicates that exon shuffling plays no role in the evolution of LPAT genes. Besides the previously defined motifs, several conserved consensus sequences were discovered which could be useful to distinguish different LPAT isoforms. Taken together, this study will enable the generation of experimental approximations to better understand the functional role of algal LPAT in lipid accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Durrett TP, Benning C, Ohlrogge J (2008) Plant triacylglycerols as feedstocks for the production of biofuels. Plant J 54:593–607

    Article  CAS  PubMed  Google Scholar 

  2. Athenstaedt K, Daum G (2006) The life cycle of neutral lipids: synthesis, storage and degradation. Cell Mol Life Sci 63:1355–1369

    Article  CAS  PubMed  Google Scholar 

  3. Malcata FX (2011) Microalgae and biofuels: a promising partnership. Trends Biotechnol 29:542–549

    Article  CAS  PubMed  Google Scholar 

  4. Wijffels RH, Barbosa M (2010) An outlook on microalgal biofuels. Science 329:796–799

    CAS  PubMed  Google Scholar 

  5. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26:126–131

    Article  CAS  PubMed  Google Scholar 

  6. Courchesne NM, Parisien A, Wang B, Lan CQ (2009) Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 141:31–41

    Article  CAS  PubMed  Google Scholar 

  7. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  8. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Liang MH, Jiang JG (2013) Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res 52:395–408

    Article  CAS  PubMed  Google Scholar 

  10. Maisonneuve S, Bessoule JJ, Lessire R, Delseny M, Roscoe TJ (2010) Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes. Plant Physiol 152:670–684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Frentzen M (1998) Acyltransferases from basic science to modified seed oils. Fett Lipid 100:161–166

    Article  CAS  Google Scholar 

  12. Zou J, Katavic V, Giblin EM, Barton DL, Mackenzie SL, Keller WA, Hu X, Taylor DC (1997) Modification of seed oil content and acyl composition in the Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–992

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Xu K, Yang Y, Li X (2010) Ectopic expression of Crambe abyssinica lysophosphatidic acid acyltransferase in transgenic rapeseed increases its oil content. Afr J Biotechnol 9:3904–3910

    CAS  Google Scholar 

  14. Knutzon DS, Hayes TR, Wyrick A, Xiong H, Davies M, Voelker TA (1999) Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels. Plant Physiol 120:739–746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Taylor DC, Barton DL, Giblin EM, Mackenzie SL, vanden Berg CGJ, McVetty PBE (1999) Microsomal lysophosphatidic acid acyltransferase from a Brassica oleracea cultivator incorporates erucic acid into the sn-2 position of seed triacylglycerols. Plant Physiol 109:409–420

    Google Scholar 

  16. Kim HU, Huang AHC (2004) Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol 134:1206–1216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kim HU, Li Y, Huang AHC (2005) Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell 17:1073–1089

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Brown AP, Brough CL, Kroon JTM, Slabas AR (1995) Identification of a cDNA that encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii. Plant Mol Biol 29:267–278

    Article  CAS  PubMed  Google Scholar 

  19. Hanke C, Wolter FP, Coleman J, Peterek G, Frentzen M (1995) A plant acyltransferase involved in triacylglycerols biosynthesis complements an Escherichia coli sn-1-acylglycerol-3-phosphate acyltransferase mutant. Eur J Biochem 232:806–810

    Article  CAS  PubMed  Google Scholar 

  20. Brown AP, Coleman J, Tommey AM, Watson MD, Slabas AR (1994) Isolation and characterization of maize cDNA that complements a 1-acyl-sn-glycerol-3-phosphate acyltransferase mutant of Escherichia coli and encodes a protein which has similarities to other acyltransferases. Plant Mol Biol 26:211–223

    Article  CAS  PubMed  Google Scholar 

  21. Bourgis F, Kader JC, Barret P, Renard M, Robinson D, Robinson C, Delseny M, Roscoe TJ (1999) A plastidial lysophosphatidic acid acyltransferase from oilseed rape. Plant Physiol 120:913–921

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Knutzon DS, Lardizabal KD, Nelsen JS, Bleibaum JL, Davies HM, Metz JC (1995) Cloning of a coconut endosperm cDNA encoding a 1-acyl-sn-glycerol-3-phosphate acyltransferase that accepts medium-chain length substrates. Plant Physiol 109:999–1006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Chen SL, Huang JQ, Lei Y, Zhang YT, Ren XP, Chen YN, Jiang HF, Yan LY, Li YR, Liao BS (2012) Isolation and characterization of a gene encoding a putative lysophosphatidyl acyltransferase from Arachis hypogaea. J Biosci 37:1029–1039

    Article  CAS  PubMed  Google Scholar 

  24. Yamashita A, Nakanishi H, Suzuki H, Kamata R, Tanaka K, Waku K, Sugiura T (2007) Topology of acyltransferase motifs and substrate specificity and accessibility in 1-acyl-sn-glycerol-3-phosphate acyltransferase 1. Biochim Biophys Acta 1771:1202–1215

    Article  CAS  PubMed  Google Scholar 

  25. Ghosh AK, Chauhan N, Rajakumari S, Daum G, Rajasekharan R (2009) At4g24160, a soluble acyl-coenzyme a-dependent lysophosphatidic acid acyltransferase. Plant Physiol 151:869–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Cao YZ, Oo KC, Huang AHC (1990) Lysophosphatidate acyltransferase in the microsomes from maturing seeds of meadowfoam (Limnanthes alba). Plant Physiol 94:1199–1206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Laurant P, Huang AHC (1992) Organ and development specific acyl-CoA lysophosphatidate acyltransferase in palm and meadowfoam. Plant Physiol 99:1711–1715

    Article  Google Scholar 

  28. Sivakumar D, Lahiri C, Chakravortty D (2013) Computational studies on histidine kinase protein BaeS to target multidrug-resistant Salmonella. Med Chem Res 22:1804–1811

    Article  CAS  Google Scholar 

  29. Sivakumar D, Sivaraman T (2011) In silico designing and screening of lead compounds to NS5-methyltransferase of dengue viruses. Med Chem 7:655–662

    Article  CAS  PubMed  Google Scholar 

  30. Chen JE, Smith AG (2012) A look at diacylglycerol acyltransferase (DGATs) in algae. J Biotechnol 162:28–39

    Article  CAS  PubMed  Google Scholar 

  31. Misra N, Panda PK (2013) In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein. OMICS 17:173–186

    Article  CAS  PubMed  Google Scholar 

  32. Huerlimann R, Heimann K (2013) Comprehensive guide to acetyl-carboxylases in algae. Crit Rev Biotechnol 33:49–65

    Article  CAS  PubMed  Google Scholar 

  33. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Res 41:95–98

    CAS  Google Scholar 

  34. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng 4:155–164

    Article  CAS  PubMed  Google Scholar 

  36. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–139

    Article  CAS  PubMed  Google Scholar 

  37. Heath R, Rock CO (1998) A conserved histidine is essential for glycerolipid acyltransferase catalysis. J Bacteriol 180:1425–1430

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Lewin TM, Wang P, Coleman RA (1999) Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–5771

    Article  CAS  PubMed  Google Scholar 

  39. Maisonneuve S, Guyot R, Roscoe T (2010) Life and death among plant lysophosphatidic acid acyltransferase. Plant Signal Behav 5:913–915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Vicentini R, Menossi M (2009) The predicted subcellular localisation of the sugarcane proteome. Funct Plant Biol 36:242–250

    Article  CAS  Google Scholar 

  41. Keegstra K, Olsen LJ, Theg M (1989) Chloroplast precursors and their transport across the envelope. Annu Rev Plant Physiol Plant Mol Biol 40:471–501

    Article  CAS  Google Scholar 

  42. Jackson MR, Nilsson T, Peterson PA (1993) Retrieval of transmembrane proteins to the endoplasmic reticulum. J Cell Biol 121:317–332

    Article  CAS  PubMed  Google Scholar 

  43. Yu B, Wakao S, Fan J, Benning C (2004) Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol 45:503–510

    Article  CAS  PubMed  Google Scholar 

  44. Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequences of the ultrasmall unicellular red algae Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  CAS  PubMed  Google Scholar 

  45. Misra N, Panda PK, Parida BK, Mishra BK (2012) Phylogenomic study of lipid genes involved in microalgal biofuel production-candidate gene mining and metabolic pathway analysis. Evol Bioinform 8:545–564

    CAS  Google Scholar 

  46. Liu M, Wu S, Walch H, Grigoriev A (2005) Exon-domain correlation and its corollaries. Bioinformatics 21:3213–3216

    Article  CAS  PubMed  Google Scholar 

  47. Kolkman JA, Stemmer WPC (2001) Directed evolution of proteins by exon shuffling. Nature 19:423–428

    CAS  Google Scholar 

  48. Gilbert W (1978) Why genes in pieces? Nature 271:501

    Article  CAS  PubMed  Google Scholar 

  49. Patthy L (1987) Intron-dependent evolution: preferred types of exons and introns. FEBS Lett 214:1–7

    Article  CAS  PubMed  Google Scholar 

  50. Taylor DC, Francis TF, Lozinsky S, Hoffman T, Giblin M, Marillia EF (2010) Cloning and characterization of a constitutive lysophosphatidic acid acyltransferase 2 (LPAT2) gene from Tropaeolum majus L. Open Plant Sci J 4:7–17

    Article  CAS  Google Scholar 

  51. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21:3435–3438

    Article  CAS  PubMed  Google Scholar 

  52. Esnouf RM, Hamer R, Sussman JL, Silman I, Trudgian D, Yang ZR, Prilusky J (2006) Honing the in silico toolkit for detecting protein disorder. Acta Cryst D 62:1260–1266

    Article  Google Scholar 

  53. Pazos F, Pietrosemoli N, Garcia-Martin JA, Solano R (2013) Protein intrinsic disorder in plants. Front Plant Sci 4:1–5

    Article  Google Scholar 

  54. Turchetto-Zolet AC, Maraschin FS, deMorais GL, Cagilari A, Andrade CMB, Margis-Pinheiro M, Margis R (2011) Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis. BMC Evol Biol 11:263–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Gimeno RE, Cao J (2008) mammalian glycerol-3-phosphate acyltransferase: new genes for an old activity. J Lipid Res 49:2079–2088

    Article  CAS  PubMed  Google Scholar 

  56. Eberhardt C, Gray PE, Tjoelker LW (1997) Human lysophosphatidic acid acyltransferase. cDNA cloning, expression, and localization to chromosome 9q34.3. J Biol Chem 272:20299–20305

    Article  CAS  PubMed  Google Scholar 

  57. Brenner S (1988) The molecular evolution of genes and proteins: a tale of two serines. Nature 334:230–528

    Article  Google Scholar 

  58. Fan J, Andre C, Xu C (2011) A chloroplast pathway for the denovo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii. FEBS Lett 585:1985–1991

    Article  CAS  PubMed  Google Scholar 

  59. Liu B, Benning C (2012) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:1–10

    Article  Google Scholar 

  60. Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J (2012) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotech 23:352–363

    Article  CAS  PubMed  Google Scholar 

  61. Radakovits R, Jinkerson RE, Fuerstenberg SI, Tae H, Settlage RE, Boore JL, Posewitz MC (2012) Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropsis gaditana. Nat Commun 3:686

    Article  PubMed Central  PubMed  Google Scholar 

  62. Vieler A, Wu G, Tsai CH, Bullard B, Cornish AJ, Harvey C, Reca IB, Thornburg C, Achawanantakun R, Buehl CJ, Campbell MS, Cavalier D, Childs KL, Clark TJ, Deshpande R, Erickson E, Ferguson AA, Handee W, Kong Q, Li X, Liu B, Lundback S, Peng C, Roston RL, Sanjaya Simpson JP, TerBush A, Warakanont J, Zauner S, Farre EM, Hegg EL, Jiang N, Kuo MH, Lu Y, Niyogi KK, Ohlrogge J, Osteryoung KW, Shachar-Hill Y, Sears BB, Sun Y, Takahashi H, Yandell M, Shiu SH, Benning C (2012) Genome, functional gene annotation and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 8:1–22

    Article  Google Scholar 

  63. Lykidis A, Ivanova N (2008) Genomic prospecting for microbial biofuel production. In: Wall JD, Harwood CS, Demain A (eds) Bioenergy. ASM Press, Washington, pp 407–417

    Chapter  Google Scholar 

  64. Ichihara K, Takahashi T, Fujii S (1988) Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis. Biochim Biophys Acta 958:125–129

    Article  CAS  PubMed  Google Scholar 

  65. Murata N, Tasaka Y (1997) Glycerol-3-phosphate acyltransferase in plants. Biochim Biophys Acta 1348:10–16

    Article  CAS  PubMed  Google Scholar 

  66. Shekar S, Tumaney AW, Rao TJVS, Rajasekharan R (2002) Isolation of lysophosphatidic acid phosphatase from developing peanut cotyledons. Plant Physiol 128:988–996

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Saha S, Enugutti B, Rajakumari S, Rajasekharan R (2006) Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol 141:1533–1543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Bhattacharya D, Medlin L (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116:9–15

    Article  PubMed Central  CAS  Google Scholar 

  69. Reyes-Prieto A, Weber APM, Bhattacharya D (2007) The origin and establishment of the plastids in algae and plants. Annu Rev Genet 41:147–168

    Article  CAS  PubMed  Google Scholar 

  70. Long M, Deutsch M, Wang W, Betran E, Brunet FG, Zhang J (2003) Origin of new genes: evidence from experimental and computational analyses. Genetica 118:171–182

    Article  CAS  PubMed  Google Scholar 

  71. Liu M, Grigoriev A (2004) Proteins domains correlate strongly with exons in multiple eukaryotic genomes-evidence of exon shuffling. Trends Genet 20:399–403

    Article  PubMed  Google Scholar 

  72. Bouche N, Bouchez D (2001) Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol 4:111–117

    Article  CAS  PubMed  Google Scholar 

  73. Drews GN, Yadegari R (2002) Development and function of the angiosperm female gametophyte. Annu Rev Genet 36:99–124

    Article  CAS  PubMed  Google Scholar 

  74. Giroud C, Gerber A, Eichenberger W (1988) Lipids of Chlamydomonas reinhardtii: analysis of molecular species and intracellular sites of biosynthesis. Plant Cell Physiol 29:587–595

    CAS  Google Scholar 

Download references

Acknowledgments

Award of Senior Research Fellowship to NM by Council for Scientific and Industrial Research, New Delhi, India is gratefully acknowledged. The authors thank Director, CSIR-IMMT for his constant support and also providing laboratory facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanna Kumar Panda.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, N., Panda, P.K. & Parida, B.K. Genome-wide identification and evolutionary analysis of algal LPAT genes involved in TAG biosynthesis using bioinformatic approaches. Mol Biol Rep 41, 8319–8332 (2014). https://doi.org/10.1007/s11033-014-3733-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3733-1

Keywords

Navigation