Skip to main content
Log in

Reduction of EPSP synthase in transgenic wild turnip (Brassica rapa) weed via suppression of aroA

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

EPSPS is coded with the aroA gene, a key enzyme that catalyzes the penultimate step of shikimate pathway. The current study focuses on the suppression of aroA gene in weedy Brassica rapa. For this purpose B. rapa was transformed with double-stranded RNA interference construct designed to silence aroA gene. This developed in a significant decline in EPSPS (about 72 %) in T0 and T1 plants. In order to study the gene flow, the B. rapa control and B. napus plants were pollinated with T0 B. rapa. Results showed that in the next generation of challenging plants, the pollinated normal B. rapa showed the T1 symptoms and performance. Statistical analysis of data showed that knocking down of aroA will lead to a weakness and decreasing in investigated morphological, physiological and phonological characteristics. Meanwhile pollinated B. napus plant species have been not fertilized by T0 B. rapa. To conclude current result is the first evidence of aroA gene inhibition induces a high decrease in EPSPS protein in B. rapa. Also this result provides a basis for the future investigation in order to controlling B. rapa via molecular approach along with agronomical, biological and chemical methods regarding environmental considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Holm L, Doll J, Holm E, Pancho J, Herberger J (1997) World Weeds. Natural Histories and Distribution. John Wiley and Sons Inc, USA

    Google Scholar 

  2. Lu CM, Kato M, Kakihara F (2002) Destiny of a transgene escape from Brassica napus into Brassica rapa. Theor Appl Genet 105:78–84

    Article  CAS  PubMed  Google Scholar 

  3. Kahrizi D, Salmanian AH, Afshari A, Moieni A, Mousavi A (2007) Simultaneous substitution of Gly96 to Ala183 to Thr in 5-enolpyruvylshikimate 3-phosphate synthase gene of E. coli (k12) and transformation of rapeseed (Brassica napus L.) in order to make tolerance to glyphosate. Plant Cell Rep 26:95–104

    Article  CAS  PubMed  Google Scholar 

  4. Kahrizi D, Salmanian AH (2008) Substitution of Ala183Thr in aroA Product of E. coli (k12) and Transformation of Rapeseed (Brassica napus) with Altered Gene to Tolerance of Plant to Roundup. Transgenic Plant J 2(2):170–175

    Google Scholar 

  5. Cheévre AM, Eber F, Baranger A, Hureau G, Barret P, Renard M (1998) Characterization of backcross generations obtained under field conditions from oilseed rape-wild radish F1 interspecific hybrids: an assessment of transgene dispersal. Theor Appl Genet 97:90–98

    Article  Google Scholar 

  6. Jørgensen RB, Andersen B (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae): a risk of growing genetically modified oilseed rape. Am J Bot 81:1620–1626

    Article  Google Scholar 

  7. Chevre AM, Eber F, Baranger A, Renard M (1997) Gene flow from transgenic crops. Nature 389:924

    Article  CAS  Google Scholar 

  8. Hansen LB, Siegismund HR, Jørgensen RB (2003) Progressive introgression between Brassica napus (oilseed rape) and B. rapa. Heredity 91:276–283

    Article  CAS  PubMed  Google Scholar 

  9. Warwick SI, Légère AL, Simard MJ, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol Ecol 17:1387–1395

    Article  CAS  PubMed  Google Scholar 

  10. Himanen SJ, Nerg AM, Poppy GM, Stewart CNJ, Holopainen JK (2010) Abiotic stress and transgenics: implications for reproductive success and crop-to-wild gene flow in Brassicas. Basic Appl Ecol 11:513–521

    Article  Google Scholar 

  11. Scott SE, Wilkinson MJ (1998) Transgene risk is low. Nature 393:320

    Article  CAS  Google Scholar 

  12. Kuiper HA, Kleter GA, Noordam MY (2000) Risks of the release of transgenic herbicide-resistant plants with respect to humans, animals, and the environment. Crop Prot 19:773–778

    Article  Google Scholar 

  13. Cogoni C, Macino G (2000) Post-transcriptional gene silencing across kingdoms. Curr Opin Genet Dev 10:638–643

    Article  CAS  PubMed  Google Scholar 

  14. Khraiwesh B, Arif MA, Seumel GI, Ossowski S, Weigel D, Reski R, Frank W (2010) Transcriptional control of gene expression by microRNAs. Cell 140:111–122

    Article  CAS  PubMed  Google Scholar 

  15. Smith HA, Swaney SL, Parks TD, Wernsman EA, Dougherty WG (1994) Transgenic plant virus resistance mediated by untranslatable sense RNAs: expression, regulation, and fate of nonessential RNAs. Plant Cell 6:1441–1453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Wiedemann G, Hermsen C, Melzer M, Büttner-Mainik A, Rennenberg H, Reski R, Kopriva S (2010) Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development. FEBS Lett 584:2271–2278

    Article  CAS  PubMed  Google Scholar 

  17. Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Chunli S, Junlian M, Xia T, Zide Z, Zhixia H (2009) Strawberry FaEtr2 gene RNAi expression vector construction and genetic transformation. Front Agric China 3(4):419–424

    Article  Google Scholar 

  19. Niu JH, Jian H, Xu JM, Guo YD, Liu Q (2010) RNAi technology extends its reach: engineering plant resistance against harmful eukaryotes. Afr J Biotechnol 9(45):7573–7582

    CAS  Google Scholar 

  20. Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  21. Wesley SV, Helliwell CA, Smith NA (2001) Construct design for efficient, effective and high throughput gene silencing in plants. Plant J 27:581–590

    Article  CAS  PubMed  Google Scholar 

  22. Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  CAS  PubMed  Google Scholar 

  23. Murray MG, Thampson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Abbott JC, Barakate A, Pincon G, Legrand M, Lapierre C, Mila I, Schuch W, Halpin C (2002) Simultaneous suppression of multiple genes by single transgenes. Down-regulation of three unrelated lignin biosynthetic genes in tobacco. Plant Physiol 128:844–853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Wang HY, Li YF, Xie LX, Xu P (2003) Expression of bacterial aroA mutant, aroA-M1, encoding 5-enolpyruvylshikimste-3phosphate synthase for the production of glyphosate-resistant tobacco plants. J Plant Res 116:455–460

    Article  CAS  PubMed  Google Scholar 

  26. Husken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breed 16:127–138

    Article  Google Scholar 

  27. Bucher E, Lohuis D, van Poppel PM, Geerts-Dimitriadou C, Goldbach R, Prins M (2006) Multiple virus resistance at a high frequency using a single transgene construct. J Gen Virol 87:3697–3701

    Article  CAS  PubMed  Google Scholar 

  28. Bing DJ, Downey RK, Rakow FW (1996) Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breed 115:470–473

    Article  Google Scholar 

  29. Brown J, Brown AP (1996) Gene transfer between canola (Brassica napus L. and B. campestris L.) and related weed species. Ann Appl Biol 129:513–522

    Article  Google Scholar 

  30. Butruille DV, Guries RP, Osborn TC (1999) Increasing yield of spring oilseed rape hybrids through introgression of winter germplasm. Crop Sci 39:1491–1496

    Article  Google Scholar 

  31. Budewig S, Léon J (2003) Higher yield stability for oilseed rape hybrids. In: 11th International Rapeseed Congress, Copenhagen, Denmark, 6–10 July 2003, pp 347–349

  32. Han-Zhong W, Gui-Hua L, Xin-Fa W, Jing L, Qing YM, Wei H 2009 Heterosis and breeding of high oil content in rapeseed (Brassica napus L.). In: 16th Australian Research Assembly on Brassicas, Ballarat, Victoria

  33. Lu C, Kato M, Kakihara F (2002) Destiny of a transgene escape from Brassica napus into Brassica rapa. Theor Appl Genet 105:78–84

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Razi University has financially supported this research Project No. 996. I thank Dr. Noorbakhsh Hooti for critical reading of this manuscript and Dr. K. Yari (Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran) for technical supports. Thanks to Zagros Biotechnology Section of Razi University Incubator for technical Supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danial Kahrizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahrizi, D. Reduction of EPSP synthase in transgenic wild turnip (Brassica rapa) weed via suppression of aroA. Mol Biol Rep 41, 8177–8184 (2014). https://doi.org/10.1007/s11033-014-3718-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3718-0

Keywords

Navigation