Skip to main content

Advertisement

Log in

Screening essential genes of Mycobacterium tuberculosis with the pathway enrichment method

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The number of effective drugs for the prevention and control of tuberculosis is very limited. Therefore, high-throughput screening for Mycobacterium tuberculosis drug targets is critical. In addition, determining the essential gene cluster is important for both understanding a survival mechanism and finding novel molecular targets for anti-tuberculosis drugs. In this study, we applied the pathway enrichment method to perform high throughput screening of genes encoding key molecules for potential drug targets for M. tuberculosis. Our results indicated 122 genes that existed in more than three pathways, while four existed in 11 pathways. We predicted 55 genes that are potentially essential genes. Four of them, namely, Rv0363c, Rv0408, Rv0409 and Rv0794c, had the highest probability to be essential genes, and thus further experimental validation is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dutta NK et al (2010) Genetic requirements for the survival of tubercle bacilli in primates. J Infect Dis 201:1743–1752

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Cavusoglu C et al (2004) Genotyping of rifampin-resistant Mycobacterium tuberculosis isolates from western Turkey. Ann Saudi Med 24:102–105

    PubMed  Google Scholar 

  3. Sarkar S, Suresh MR (2011) An overview of tuberculosis chemotherapy—a literature review. J Pharm Pharm Sci 14:148–161

    PubMed  CAS  Google Scholar 

  4. Meena LS, Rajni (2010) Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. The FEBS journal 277:2416–2427

    Article  PubMed  CAS  Google Scholar 

  5. Gerdes S et al (2006) Essential genes on metabolic maps. Curr Opin Biotechnol 17:448–456

    Article  PubMed  CAS  Google Scholar 

  6. Koonin EV (2003) Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1:127–136

    Article  PubMed  CAS  Google Scholar 

  7. Glass JI et al (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103:425–430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Kobayashi K et al (2003) Essential Bacillus subtilis genes. Proc Natl Acad Sci USA 100:4678–4683

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Hu W et al (2007) Essential gene identification and drug target prioritization in Aspergillus fumigatus. PLoS Pathog 3:e24

    Article  PubMed  PubMed Central  Google Scholar 

  10. Haselbeck R et al (2002) Comprehensive essential gene identification as a platform for novel anti-infective drug discovery. Curr Pharm Des 8:1155–1172

    Article  PubMed  CAS  Google Scholar 

  11. Giaever G et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  12. Ji Y et al (2001) Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293:2266–2269

    Article  PubMed  CAS  Google Scholar 

  13. Forsyth RA et al (2002) A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol Microbiol 43:1387–1400

    Article  PubMed  CAS  Google Scholar 

  14. Awasthy D et al (2012) Alanine racemase mutants of Mycobacterium tuberculosis require d-alanine for growth and are defective for survival in macrophages and mice. Microbiology 158:319–327

    Article  PubMed  CAS  Google Scholar 

  15. Ta P et al (2011) Organic hydroperoxide resistance protein and ergothioneine compensate for loss of mycothiol in Mycobacterium smegmatis mutants. J Bacteriol 193:1981–1990

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Zeng J et al (2012) A genome-wide regulator-DNA interaction network in the human pathogen Mycobacterium tuberculosis H37Rv. J Proteome Res 11:4682–4692

    Article  PubMed  CAS  Google Scholar 

  17. Tong X et al (2004) Genome-scale identification of conditionally essential genes in E. coli by DNA microarrays. Biochem Biophys Res Commun 322:347–354

    Article  PubMed  CAS  Google Scholar 

  18. Rao M et al (2001) Intracellular pH regulation by Mycobacterium smegmatis and Mycobacterium bovis BCG. Microbiology 147:1017–1024

    PubMed  CAS  Google Scholar 

  19. Deckers-Hebestreit G, Altendorf K (1996) The F0F1-type ATP synthases of bacteria: structure and function of the F0 complex. Annu Rev Microbiol 50:791–824

    Article  PubMed  CAS  Google Scholar 

  20. Rivers EC, Mancera RL (2008) New anti-tuberculosis drugs in clinical trials with novel mechanisms of action. Drug Discovery Today 13:1090–1098

    Article  PubMed  CAS  Google Scholar 

  21. Rivers EC, Mancera RL (2008) New anti-tuberculosis drugs with novel mechanisms of action. Curr Med Chem 15:1956–1967

    Article  PubMed  CAS  Google Scholar 

  22. Godreuil S et al (2007) Genetic diversity and population structure of Mycobacterium tuberculosis in HIV-1-infected compared with uninfected individuals in Burkina Faso. AIDS 21:248–250

    Article  PubMed  Google Scholar 

  23. Mdluli K, Spigelman M (2006) Novel targets for tuberculosis drug discovery. Curr Opin Pharmacol 6:459–467

    Article  PubMed  CAS  Google Scholar 

  24. Chatterjee D (1997) The mycobacterial cell wall: structure, biosynthesis and sites of drug action. Curr Opin Chem Biol 1:579–588

    Article  PubMed  CAS  Google Scholar 

  25. Zhang XC et al (2011) Cancer nursing research output and topics in the first decade of the 21st century: results of a bibliometric and co-word cluster analysis. Asian Pac J Cancer Prev 12:2055–2058

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (81101295 and 81071424), Specialized Research Fund for the Doctoral Program of Higher Education of China (20110061120093), China Postdoctoral Science Foundation(20110491311 and 2012T50304),Foundation of Xinjiang Provincial Science & Technology Department(201091148)and Foundation of Jilin Provincial Health Department (2010Z034 and 2011Z049),Bethune special foundation of Jilin University. It was also supported in part by National Basic Research Program of China (973 program, 2011CB512003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyu Xu, Guoqing Wang or Fan Li.

Additional information

Guangyu Xu and Zhaohui Ni are contributed equally to the work reported here. Guoqing Wang and Fan Li are co-corresponding authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Ni, Z., Shi, Y. et al. Screening essential genes of Mycobacterium tuberculosis with the pathway enrichment method. Mol Biol Rep 41, 7639–7644 (2014). https://doi.org/10.1007/s11033-014-3654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3654-z

Keywords

Navigation