Skip to main content
Log in

Minimum length of direct repeat sequences required for efficient homologous recombination induced by zinc finger nuclease in yeast

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Zinc finger nuclease (ZFN) technology is a powerful molecular tool for targeted genome modifications and genetic engineering. However, screening for specific ZFs and validation of ZFN activity are labor intensive and time consuming. We previously designed a yeast-based ZFN screening and validation system by inserting a ZFN binding site flanked by a 164 bp direct repeat sequence into the middle of a Gal4 transcription factor, disrupting the open reading frame of the yeast Gal4 gene. Expression of the ZFN causes a double stranded break at its binding site, which promotes the cellular DNA repair system to restore expression of a functional Gal transcriptional factor via homologous recombination. Expression of Gal4 transcription factor leads to activation of three reporter genes in an AH109 yeast two-hybrid strain. However, the 164 bp direct repeat appears to generate spontaneous homologous recombination frequently, resulting in many false positive ZFNs. To overcome this, a series of DNA fragments of various lengths from 10 to 150 bp with 10 bp increase each and 164 bp direct repeats flanking the ZFN binding site were designed and constructed. The results demonstrated that the minimum length required for ZFN-induced homologous recombination was 30 bp, which almost eliminated spontaneous recombination. Using the 30 bp direct repeat sequence, ZFN could efficiently induce homologous recombination, while false positive ZFNs resulting from spontaneous homologous recombination were minimized. Thus, this study provided a simple, fast and sensitive ZFN screening and activity validation system in yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cathomen T, Joung JK (2008) Zinc-finger nucleases: the next generation emerges. Mol Ther J Am Soc Gene Ther 16(7):1200–1207. doi:10.1038/mt.2008.114

    Article  CAS  Google Scholar 

  2. Isalan M (2012) Zinc-finger nucleases: how to play two good hands. Nat Methods 9(1):32–34. doi:10.1038/nmeth.1805

    Article  CAS  Google Scholar 

  3. Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA 107(26):12034–12039. doi:10.1073/pnas.1000234107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Tovkach A, Zeevi V, Tzfira T (2009) A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells. Plant J Cell Mol Biol 57(4):747–757. doi:10.1111/j.1365-313X.2008.03718.x

    Article  CAS  Google Scholar 

  5. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459(7245):437–441. doi:10.1038/nature07992

    Article  CAS  PubMed  Google Scholar 

  6. Zhang F, Voytas DF (2011) Targeted mutagenesis in Arabidopsis using zinc-finger nucleases. Methods Mol Biol 701:167–177. doi:10.1007/978-1-61737-957-4_9

    Article  CAS  PubMed  Google Scholar 

  7. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459(7245):442–445. doi:10.1038/nature07845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung JK, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107(26):12028–12033. doi:10.1073/pnas.0914991107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D (2006) Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 172(4):2391–2403. doi:10.1534/genetics.105.052829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708. doi:10.1038/nbt1409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Foley JE, Yeh JR, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK (2009) Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS ONE 4(2):e4348. doi:10.1371/journal.pone.0004348

    Article  PubMed Central  PubMed  Google Scholar 

  12. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, Jenkins SS, Wood A, Cui X, Meng X, Vincent A, Lam S, Michalkiewicz M, Schilling R, Foeckler J, Kalloway S, Weiler H, Menoret S, Anegon I, Davis GD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jacob HJ, Buelow R (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433. doi:10.1126/science.1172447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Voigt B, Serikawa T (2009) Pluripotent stem cells and other technologies will eventually open the door for straightforward gene targeting in the rat. Dis Models Mech 2(7–8):341–343. doi:10.1242/dmm.002824

    Article  CAS  Google Scholar 

  14. Lee HJ, Kim E, Kim JS (2010) Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res 20(1):81–89. doi:10.1101/gr.099747.109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26(7):808–816. doi:10.1038/nbt1410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, Porteus MH, Joung JK, Cheng L (2009) Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5(1):97–110. doi:10.1016/j.stem.2009.05.023

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey RJ, Hirsh AS, Eichtinger M, Fu F, Porteus MH, Dobbs D, Voytas DF, Joung JK (2006) Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc 1(3):1637–1652. doi:10.1038/nprot.2006.259

    Article  PubMed  Google Scholar 

  18. Sander JD, Dahlborg EJ, Goodwin MJ, Cade L, Zhang F, Cifuentes D, Curtin SJ, Blackburn JS, Thibodeau-Beganny S, Qi Y, Pierick CJ, Hoffman E, Maeder ML, Khayter C, Reyon D, Dobbs D, Langenau DM, Stupar RM, Giraldez AJ, Voytas DF, Peterson RT, Yeh JR, Joung JK (2011) Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8(1):67–69. doi:10.1038/nmeth.1542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Maeder ML, Thibodeau-Beganny S, Osiak A, Wright DA, Anthony RM, Eichtinger M, Jiang T, Foley JE, Winfrey RJ, Townsend JA, Unger-Wallace E, Sander JD, Muller-Lerch F, Fu F, Pearlberg J, Gobel C, Dassie JP, Pruett-Miller SM, Porteus MH, Sgroi DC, Iafrate AJ, Dobbs D, McCray PB Jr, Cathomen T, Voytas DF, Joung JK (2008) Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31(2):294–301. doi:10.1016/j.molcel.2008.06.016

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Meng X, Noyes MB, Zhu LJ, Lawson ND, Wolfe SA (2008) Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol 26(6):695–701. doi:10.1038/nbt1398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Fishman-Lobell J, Rudin N, Haber JE (1992) Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol Cell Biol 12(3):1292–1303

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Lin FL, Sperle K, Sternberg N (1984) Model for homologous recombination during transfer of DNA into mouse L cells: role for DNA ends in the recombination process. Mol Cell Biol 4(6):1020–1034

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Lin FL, Sperle K, Sternberg N (1990) Repair of double-stranded DNA breaks by homologous DNA fragments during transfer of DNA into mouse L cells. Mol Cell Biol 10(1):113–119

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Maryon E, Carroll D (1991) Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination. Mol Cell Biol 11(6):3278–3287

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Sugawara N, Haber JE (1992) Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation. Mol Cell Biol 12(2):563–575

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Ahn BY, Dornfeld KJ, Fagrelius TJ, Livingston DM (1988) Effect of limited homology on gene conversion in a Saccharomyces cerevisiae plasmid recombination system. Mol Cell Biol 8(6):2442–2448

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Nickoloff JA, Singer JD, Hoekstra MF, Heffron F (1989) Double-strand breaks stimulate alternative mechanisms of recombination repair. J Mol Biol 207(3):527–541

    Article  CAS  PubMed  Google Scholar 

  28. Ray A, Siddiqi I, Kolodkin AL, Stahl FW (1988) Intra-chromosomal gene conversion induced by a DNA double-strand break in Saccharomyces cerevisiae. J Mol Biol 201(2):247–260

    Article  CAS  PubMed  Google Scholar 

  29. Rudin N, Haber JE (1988) Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol Cell Biol 8(9):3918–3928

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Rudin N, Sugarman E, Haber JE (1989) Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122(3):519–534

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Ozenberger BA, Roeder GS (1991) A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol Cell Biol 11(3):1222–1231

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Fishman-Lobell J, Haber JE (1992) Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258(5081):480–484

    Article  CAS  PubMed  Google Scholar 

  33. Gysler-Junker A, Bodi Z, Kohli J (1991) Isolation and characterization of Schizosaccharomyces pombe mutants affected in mitotic recombination. Genetics 128(3):495–504

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Perez C, Guyot V, Cabaniols JP, Gouble A, Micheaux B, Smith J, Leduc S, Paques F, Duchateau P (2005) Factors affecting double-strand break-induced homologous recombination in mammalian cells. Biotechniques 39(1):109–115

    Article  CAS  PubMed  Google Scholar 

  35. Ira G, Haber JE (2002) Characterization of RAD51-independent break-induced replication that acts preferentially with short homologous sequences. Mol Cell Biol 22(18):6384–6392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Sugawara N, Ira G, Haber JE (2000) DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol Cell Biol 20(14):5300–5309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39(12):e82. doi:10.1093/nar/gkr218

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. McCammon JM, Doyon Y, Amacher SL (2011) Inducing high rates of targeted mutagenesis in zebrafish using zinc finger nucleases (ZFNs). Methods Mol Biol 770:505–527. doi:10.1007/978-1-61779-210-6_20

    Article  CAS  PubMed  Google Scholar 

  39. Kleinstiver BP, Wolfs JM, Kolaczyk T, Roberts AK, Hu SX, Edgell DR (2012) Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci USA 109(21):8061–8066. doi:10.1073/pnas.1117984109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31(11):2952–2962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P, Paques F (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371(1):49–65. doi:10.1016/j.jmb.2007.04.079

    Article  CAS  PubMed  Google Scholar 

  42. Arnould S, Chames P, Perez C, Lacroix E, Duclert A, Epinat JC, Stricher F, Petit AS, Patin A, Guillier S, Rolland S, Prieto J, Blanco FJ, Bravo J, Montoya G, Serrano L, Duchateau P, Paques F (2006) Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 355(3):443–458. doi:10.1016/j.jmb.2005.10.065

    Article  CAS  PubMed  Google Scholar 

  43. Gietz RD, Schiestl RH (2007) Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):35–37. doi:10.1038/nprot.2007.14

    Article  CAS  PubMed  Google Scholar 

  44. Zhang T, Lei J, Yang H, Xu K, Wang R, Zhang Z (2011) An improved method for whole protein extraction from yeast Saccharomyces cerevisiae. Yeast 28(11):795–798. doi:10.1002/yea.1905

    Article  CAS  PubMed  Google Scholar 

  45. Wahls WP, Moore PD (1990) Homologous recombination enhancement conferred by the Z-DNA motif d(TG)30 is abrogated by simian virus 40 T antigen binding to adjacent DNA sequences. Mol Cell Biol 10(2):794–800

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Wahls WP, Wallace LJ, Moore PD (1990) Hypervariable minisatellite DNA is a hotspot for homologous recombination in human cells. Cell 60(1):95–103

    Article  CAS  PubMed  Google Scholar 

  47. Ayares D, Chekuri L, Song KY, Kucherlapati R (1986) Sequence homology requirements for intermolecular recombination in mammalian cells. Proc Natl Acad Sci USA 83(14):5199–5203

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Liskay RM, Letsou A, Stachelek JL (1987) Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics 115(1):161–167

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Shen P, Huang HV (1986) Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112(3):441–457

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Singer BS, Gold L, Gauss P, Doherty DH (1982) Determination of the amount of homology required for recombination in bacteriophage T4. Cell 31(1):25–33

    Article  CAS  PubMed  Google Scholar 

  51. Jinks-Robertson S, Michelitch M, Ramcharan S (1993) Substrate length requirements for efficient mitotic recombination in Saccharomyces cerevisiae. Mol Cell Biol 13(7):3937–3950

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Yuan J, Strack PR, Toniatti C, Pelletier M (2012) A zinc finger nuclease assay to rapidly quantitate homologous recombination proficiency in human cell lines. Anal Biochem. doi:10.1016/j.ab.2012.11.002

    Google Scholar 

  53. Connelly JP, Barker JC, Pruett-Miller S, Porteus MH (2010) Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease. Mol Ther J Am Soc Gene Ther 18(6):1103–1110. doi:10.1038/mt.2010.57

    Article  CAS  Google Scholar 

  54. White CI, Haber JE (1990) Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J 9(3):663–673

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Lambert S, Saintigny Y, Delacote F, Amiot F, Chaput B, Lecomte M, Huck S, Bertrand P, Lopez BS (1999) Analysis of intrachromosomal homologous recombination in mammalian cell, using tandem repeat sequences. Mutat Res 433(3):159–168

    Article  CAS  PubMed  Google Scholar 

  56. Hurt JA, Thibodeau SA, Hirsh AS, Pabo CO, Joung JK (2003) Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci USA 100(21):12271–12276. doi:10.1073/pnas.2135381100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Zhang Z lab for comments. This study was supported by Grants from National Natural Science Foundation of China (No. 31172186) and National Basic Research Program (No. 2011CBA01002).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhiYing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, C., Yan, Q. & Zhang, Z. Minimum length of direct repeat sequences required for efficient homologous recombination induced by zinc finger nuclease in yeast. Mol Biol Rep 41, 6939–6948 (2014). https://doi.org/10.1007/s11033-014-3579-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3579-6

Keywords

Navigation