Skip to main content
Log in

Isolation and characterization of the Agvip1 gene and response to abiotic and metal ions stresses in three celery cultivars

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

VIP1, a VirE2-interacting protein 1, specifically interacts with VirE2 and acts as a molecular adaptor in Agrobacterium-mediated genetic transformation. This protein is widely used in plant genetic engineering. In this study, we cloned the Agvip1 gene that encodes the AgVIP1 protein from three celery (Apium graveolens) cultivars, namely, “Liuhe Huangxinqin”, “Jinnan Shiqin”, and “Ventura”. The sequence analysis indicated that the Agvip1 gene from the three celery cultivars contained 768 bp Open Reading Frame and encoded with 255 amino acid residues. The N-terminal of AgVIP1 contained RNA recognition motif superfamily, a conserved domain. The Agvip1 gene in three cultivars had very high homology. The phylogenetic tree of VIP1-like proteins was constructed among celery and other plant species, showing that VIP1-like proteins from Solanum lycopersicum and Solanum tuberosum in Solanaceae had the shortest evolutionary relationship with AgVIP1 from A. graveolens in Apiaceae. Quantitative real-time PCR demonstrated that the Agvip1 gene had tissue-specific expression, mainly in the celery root. The expression analysis showed that the Agvip1 gene was induced by abiotic stresses differently in three celery cultivars. In “Liuhe Huangxinqin”, the Agvip1 gene was up-regulated under hot, cold stresses. In “Jinnan Shiqin”, the Agvip1 gene was up-regulated obviously under cold, drought treatments. However, in “Ventura”, the Agvip1 gene was up-regulated under salt stress. The Agvip1 was also induced after metal ions treatments in three celery cultivars. These findings will provide more information on the Agvip1 gene and AgVIP1 protein, and enhance the understanding of the Agvip1 gene regulatory mechanisms under abiotic and metal ions stresses in celery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boffetta P, Couto E, Wichmann J (2010) Fruit and vegetable intake and overall cancer risk in the European prospective investigation into cancer and nutrition (EPIC). J Natl Cancer Inst 102(8):529–537

    Article  CAS  PubMed  Google Scholar 

  2. Popović M, Kaurinović B, Trivić S, Mimica-Dukić N, Bursać M (2006) Effect of celery (Apium graveolens) extracts on some biochemical parameters of oxidative stress in mice treated with carbon tetrachloride. Phytother Res 20(7):531–537

    Article  PubMed  Google Scholar 

  3. Li M-Y, Wang F, Jiang Q, Ma J, Xiong A-S (2014) Identification of SSRs and differentially expressed genes in two cultivars of celery (Apium graveolens L.) by deep transcriptome sequencing. Hortic Res 1:1–9

    Article  Google Scholar 

  4. Li M-Y, Wang F, Xu Z-S, Jiang Q, Ma J, Tan G-F, Xiong A-S (2014) High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response. BMC Genomics 15(1):242

    Article  PubMed Central  PubMed  Google Scholar 

  5. Jiang Q, Wang F, Li M-Y, H-w Tan, Ma J, Xiong A-S (2014) High-throughput analysis of small RNAs and characterization of novel microRNAs affected by abiotic stress in a local celery cultivar. Sci Hortic 169:36–43

    Article  CAS  Google Scholar 

  6. Zhuang J, Zhang J, Hou X-L, Wang F, Xiong A-S (2014) Transcriptomic, proteomic, metabolomic and functional genomic approaches for the study of abiotic stress in vegetable crops. Crit Rev Plant Sci 33(2–3):225–237

    Article  CAS  Google Scholar 

  7. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67(1):16–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. An X, Wang B, Liu L, Jiang H, Chen J, Ye S, Chen L, Guo P, Huang X, Peng D (2014) Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmeria nivea (L.) Gaud]. Mol Biol Rep 41:1–13

    Article  Google Scholar 

  9. Yang J, Zhao B, Kim YB, Zhou C, Li C, Chen Y, Zhang H, Li CH (2013) Agrobacterium tumefaciens-mediated transformation of Phellodendron amurense Rupr. using mature-seed explants. Mol Biol Rep 40(1):281–288

    Article  CAS  PubMed  Google Scholar 

  10. Hellens RP, Edwards EA, Leyland NR (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42(6):819–832

    Article  CAS  PubMed  Google Scholar 

  11. Winans SC (1992) Two-way chemical signaling in Agrobacterium-plant interactions. Microbiol Rev 56(1):12–31

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20(13):3596–3607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ziemienowicz A, Merkle T, Schoumacher F, Hohn B, Rossi L (2001) Import of Agrobacterium T-DNA into plant nuclei: two distinct functions of VirD2 and VirE2 proteins. Plant Cell 13(2):369–383

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Pitzschke A, Djamei A, Teige M, Hirt H (2009) VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc Natl Acad Sci U S A 106(43):18414–18419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Liu Y, Kong X, Pan J, Li D (2010) VIP1: linking Agrobacterium-mediated transformation to plant immunity? Plant Cell Rep 29(8):805–812

    Article  CAS  PubMed  Google Scholar 

  16. Tzfira T, Vaidya M, Citovsky V (2002) Increasing plant susceptibility to Agrobacterium infection by overexpression of the arabidopsis nuclear protein VIP1. Proc Natl Acad Sci U S A 99(16):10435–10440

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Tsugama D, Liu S, Takano T (2012) A bZIP protein, VIP1, is a regulator of osmosensory signaling in arabidopsis. Plant Physiol 159(1):144–155

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tsugama D, Liu S, Takano T (2013) Metal-binding ability of VIP1: a bZIP protein in Arabidopsis thaliana. Protein J 32(7):526–532

    Article  CAS  PubMed  Google Scholar 

  19. Shen Y-G, Zhang W-K, He S-J, Zhang J-S, Liu Q, Chen S-Y (2003) An EREBP/AP2-type protein in Triticum aestivum was a DRE-binding transcription factor induced by cold, dehydration and ABA stress. Theor Appl Genet 106(5):923–930

    CAS  PubMed  Google Scholar 

  20. Wu Y, Liu C, Kuang J, Ge Q, Zhang Y, Wang Z (2014) Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza. Protoplasma. doi:10.1007/s00709-014-0626-z

    Google Scholar 

  21. Mimitsuka T, Sawai H, Hatsu M, Yamada K (2007) Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci Biotechnol Biochem 71(9):2130–2135

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Narula A, Sharma M, Srivastava P (2004) In vitro propagation of Pluchea lanceolata, a medicinal plant, and effect of heavy metals and different aminopurines on quercetin content. In Vitro Cell Dev Biol 40(2):171–176

    Article  CAS  Google Scholar 

  23. Tippmann HF (2004) Analysis for free: comparing programs for sequence analysis. Brief Bioinform 5(1):82–87

    Article  CAS  PubMed  Google Scholar 

  24. Käll L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338(5):1027–1036

    Article  PubMed  Google Scholar 

  25. Ikeda M, Arai M, Lao DM, Shimizu T (2002) Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies. In Silico Biol 2(1):19–33

    PubMed  Google Scholar 

  26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC Bioinformatics 7(1):85

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ream W (2009) Agrobacterium tumefaciens and A. rhizogenes use different proteins to transport bacterial DNA into the plant cell nucleus. Microb Biotechnol 2(4):416–427. doi:10.1111/j.1751-7915.2009.00104.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Hwang H–H, Gelvin SB (2004) Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. Plant Cell Online 16(11):3148–3167

    Article  CAS  Google Scholar 

  30. Lacroix B, Vaidya M, Tzfira T, Citovsky V (2005) The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24(2):428–437

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Anand A, Krichevsky A, Schornack S, Lahaye T, Tzfira T, Tang Y, Citovsky V, Mysore KS (2007) Arabidopsis VIRE2 INTERACTING PROTEIN2 is required for Agrobacterium T-DNA integration in plants. Plant Cell Online 19(5):1695–1708

    Article  CAS  Google Scholar 

  32. Ditt RF, Kerr KF, de Figueiredo P, Delrow J, Comai L, Nester EW (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact 19(6):665–681

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Krichevsky A, Vaidya M, Tzfira T, Citovsky V (2005) Uncoupling of the functions of the arabidopsis VIP1 protein in transient and stable plant genetic transformation by Agrobacterium. Proc Natl Acad Sci U S A 102(16):5733–5738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Wang B, Zheng J, Liu Y, Wang J, Wang G (2012) Cloning and characterization of the stress-induced bZIP gene ZmbZIP60 from maize. Mol Biol Rep 39(5):6319–6327

    Article  CAS  PubMed  Google Scholar 

  35. Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in arabidopsis. Trends Plant Sci 7(3):106–111

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Sun Y, Yang Q, Fang F, Kang J, Zhang T (2013) Isolation and characterization of a gene from Medicago sativa L., encoding a bZIP transcription factor. Mol Biol Rep 40(2):1227–1239

    Article  PubMed  Google Scholar 

  37. Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318(5849):453–456

    Article  CAS  PubMed  Google Scholar 

  38. Terribilini M, Lee J, Yan C, Jernigan R, Honavar V, Dobbs D (2006) Prediction of RNA binding sites in proteins from amino acid sequence. RNA (New York, NY) 12(8):1450–1462

    Article  CAS  Google Scholar 

  39. Silva I, Saramago M, Dressaire C, Domingues S, Viegas S, Arraiano C (2011) Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. Wiley Interdiscip Rev RNA 2(6):818

    Article  CAS  PubMed  Google Scholar 

  40. Soltis PS, Soltis DE (2004) The origin and diversification of angiosperms. Am J Bot 91(10):1614–1626

    Article  PubMed  Google Scholar 

  41. De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20(11):591–597

    Article  PubMed  Google Scholar 

  42. Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97(8):1296–1303

    Article  PubMed  Google Scholar 

  43. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by National Natural Science Foundation of China (31272175), New Century Excellent Talents in University (NCET-11-0670), Jiangsu Natural Science Foundation (BK20130027), Priority Academic Program Development of Jiangsu Higher Education Institutions, and Jiangsu Shuangchuang Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Sheng Xiong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, YY., Wang, F. et al. Isolation and characterization of the Agvip1 gene and response to abiotic and metal ions stresses in three celery cultivars. Mol Biol Rep 41, 6003–6011 (2014). https://doi.org/10.1007/s11033-014-3478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3478-x

Keywords

Navigation