Skip to main content
Log in

Analysis of circulating microRNAs that are specifically increased in hyperlipidemic and/or hyperglycemic sera

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small non-coding RNA sequences that regulate gene expression post-transcriptionally by translation inhibition or mRNA degradation. The aim of the present study was to analyze serum miRNAs modulated by hyperlipidemia and/or hyperglycemia and to correlate them with biochemical parameters within lipid metabolism. Five selected circulating miRNAs (miR-125a-5p, miR-146a, miR-10a, miR-21 and miR-33a) were individually analyzed by TaqMan miRNA assays along with lipid and inflammation parameters in sera from 20 hyperlipidemic (HL) and/or hyperglycemic (HG) patients, and compared with data from five normolipidemic/normoglycemic subjects. Results showed: (1) the levels of all the analyzed circulating miRNA were increased in HL sera and correlated positively with sera’s lipid and inflammatory parameters; (2) circulating miR-125a-5p and miR-146a levels were increased in HG and/or HL sera; (3) all selected miRNAs were detected in α-lipoprotein fraction from sera, and miR-33a was also present in β-lipoprotein fraction; (4) miRNA concentrations were increased in the α-lipoprotein fraction from HL sera. These data show a statistically significant correlation of the analyzed miRNA with increased lipids, specifically with α- and β-lipoproteins, and CRP and IL-1β levels in HL and/or HG sera, suggesting a contribution of these miRNAs to the atherosclerotic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Hansson GK, Hermansson A (2011) The immune system in atherosclerosis. Nat Immunol 12(3):204–212

    Article  CAS  PubMed  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  4. Ono K, Kuwabara Y, Han J (2011) MicroRNAs and cardiovascular diseases. FEBS J 278(10):1619–1633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kroh EM, Parkin RK, Mitchell PS, Tewari M (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50(4):298–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M (2012) Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res 93(4):555–562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Madrigal-Matute J, Rotllan N, Aranda JF, Fernandez-Hernando C (2013) MicroRNAs and atherosclerosis. Curr Atheroscler Rep 15(5):322

    Article  PubMed Central  PubMed  Google Scholar 

  9. Rayner KJ, Fernandez-Hernando C, Moore KJ (2012) MicroRNAs regulating lipid metabolism in atherogenesis. Thromb Haemost 107(4):642–647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9(9):513–521

    Article  CAS  PubMed  Google Scholar 

  11. Balasubramanyam M, Aravind S, Gokulakrishnan K, Prabu P, Sathishkumar C, Ranjani H, Mohan V (2011) Impaired miR-146a expression links subclinical inflammation and insulin resistance in type 2 diabetes. Mol Cell Biochem 351(1–2):197–205

    Article  CAS  PubMed  Google Scholar 

  12. Ortega FJ, Mercader JM, Catalan V, Moreno-Navarrete JM, Pueyo N, Sabater M, Gomez-Ambrosi J, Anglada R, Fernandez-Formoso JA, Ricart W, Fruhbeck G, Fernandez-Real JM (2013) Targeting the circulating microRNA signature of obesity. Clin Chem 59(5):781–792

    Article  CAS  PubMed  Google Scholar 

  13. Gao W, He HW, Wang ZM, Zhao H, Lian XQ, Wang YS, Zhu J, Yan JJ, Zhang DG, Yang ZJ, Wang LS (2012) Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis 11:55

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110(3):483–495

    Article  CAS  PubMed  Google Scholar 

  15. Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, Fernandez-Hernando C (2010) MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328(5985):1570–1573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Chen T, Huang Z, Wang L, Wang Y, Wu F, Meng S, Wang C (2009) MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res 83(1):131–139

    Article  CAS  PubMed  Google Scholar 

  17. Yang K, He YS, Wang XQ, Lu L, Chen QJ, Liu J, Sun Z, Shen WF (2011) MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett 585(6):854–860

    Article  CAS  PubMed  Google Scholar 

  18. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF (2010) MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA 107(30):13450–13455

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817

    Article  CAS  PubMed  Google Scholar 

  20. Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, Dong Q, Pang Z, Guan Q, Gao L, Zhao J, Zhao L (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48(1):61–69

    Article  CAS  PubMed  Google Scholar 

  21. Kypreos KE, van Dijk KW, Havekes LM, Zannis VI (2005) Generation of a recombinant apolipoprotein E variant with improved biological functions: hydrophobic residues (LEU-261, TRP-264, PHE-265, LEU-268, VAL-269) of apoE can account for the apoE-induced hypertriglyceridemia. J Biol Chem 280(8):6276–6284

    Article  CAS  PubMed  Google Scholar 

  22. Janas T, Yarus M (2006) Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res 34(7):2128–2136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Markwell MA, Haas SM, Bieber LL, Tolbert NE (1978) A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem 87(1):206–210

    Article  CAS  PubMed  Google Scholar 

  24. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A, Lin DW, Urban N, Drescher CW, Knudsen BS, Stirewalt DL, Gentleman R, Vessella RL, Nelson PS, Martin DB, Tewari M (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684

    Article  CAS  PubMed  Google Scholar 

  26. Zampetaki A, Mayr M (2012) Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb Haemost 108(4):592–598

    Article  CAS  PubMed  Google Scholar 

  27. Wagner J, Riwanto M, Besler C, Knau A, Fichtlscherer S, Roxe T, Zeiher AM, Landmesser U, Dimmeler S (2013) Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol 33(6):1392–1400

    Article  CAS  PubMed  Google Scholar 

  28. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  29. Rong Y, Bao W, Shan Z, Liu J, Yu X, Xia S, Gao H, Wang X, Yao P, Hu FB, Liu L (2013) Increased MICRORNA-146a levels in plasma of patients with newly diagnosed type 2 diabetes mellitus. PLoS ONE 8(9):e73272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bidzhekov K, Gan L, Denecke B, Rostalsky A, Hristov M, Koeppel TA, Zernecke A, Weber C (2012) microRNA expression signatures and parallels between monocyte subsets and atherosclerotic plaque in humans. Thromb Haemost 107(4):619–625

    Article  CAS  PubMed  Google Scholar 

  31. Nazari-Jahantigh M, Wei Y, Schober A (2012) The role of microRNAs in arterial remodelling. Thromb Haemost 107(4):611–618

    Article  CAS  PubMed  Google Scholar 

  32. Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K, Sugimoto K, Ohashi K, Teradaira R, Inoue T, Hamajima N, Hashimoto S (2013) Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 424:99–103

    Article  CAS  PubMed  Google Scholar 

  33. Williams MD, Mitchell GM (2012) MicroRNAs in insulin resistance and obesity. Exp Diabetes Res 2012:484696

    Article  PubMed Central  PubMed  Google Scholar 

  34. Zhang XY, Shen BR, Zhang YC, Wan XJ, Yao QP, Wu GL, Wang JY, Chen SG, Yan ZQ, Jiang ZL (2013) Induction of thoracic aortic remodeling by endothelial-specific deletion of microRNA-21 in mice. PLoS ONE 8(3):e59002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Marquart TJ, Allen RM, Ory DS, Baldan A (2010) miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA 107(27):12228–12232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Romanian Academy, by the National Ministry of Education and Research project PN-II-PT-PCCA-2011-3.1-0184 and cofinanced by CARDIOPRO Project ID:143, European Regional Development Fund (ERDF) co-financed investment in Research, Technology Development and Innovation for Competitiveness. The authors thank Mrs. Daniela Rogoz and Ms. Cristina Dobre (Lipidomics Dept.) for their skillful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anca V. Sima.

Additional information

Natalia Simionescu and Loredan S. Niculescu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simionescu, N., Niculescu, L.S., Sanda, G.M. et al. Analysis of circulating microRNAs that are specifically increased in hyperlipidemic and/or hyperglycemic sera. Mol Biol Rep 41, 5765–5773 (2014). https://doi.org/10.1007/s11033-014-3449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3449-2

Keywords

Navigation