Skip to main content
Log in

DNA methyltransferase 1(DNMT1) induced the expression of suppressors of cytokine signaling3 (Socs3) in a mouse model of asthma

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

DNMT1 is the most important methyltransferase enzyme, involved in the regulation of gene expression and appropriate histone modification. It interact with proliferating cell nuclear antigen (PCNA), SNF2 family member ATP-dependent chromatin remodeling enzyme, cyclin dependent kinases inhibitor, E2F1 transcription factor and HDACs to form a repressor complex known as HDAC complexes. The interaction of DNMT1 with numerous protein suppressors of promoters suggests that the enzyme is a crucial element of the transcription suppression complex. Since the mechanism behind over expression of Socs3 in Asthma is unclear, we study the Epigenetic mode of overexpression of Socs3 in terms of methylation/acetylation/inactivation of HDACs/activation of HATs enzymes in a mouse model of asthma. The results show that low expression of DNMT1 might indirectly induce the expression of Socs3 and HAT, and inhibit the expression of HDACs family. Furthermore knockdown of DNMT1 by siRNA induced expression of Socs3 while knock down of Socs3 by siRNA has no effect on DNMT1 expression. Our result suggests that the over expression of Socs3 is due to the inhibition of HDACs complex and hyperacetylation of histones molecule along with down regulation of DNMT1 gene. In depth study on DNMT1 might be useful for the development of therapeutic drug against asthma/allergic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Robertson KD, Ait-Si-Ali S, Yokochi T, Wade PA, Jones PL, Wolffe AP (2000) DNMT1 forms a complex with rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25:338–342

    Article  CAS  PubMed  Google Scholar 

  2. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56

    Article  PubMed  Google Scholar 

  3. Bedford DC, Kasper LH, Fukuyama T, Brindle PK (2010) Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics 5(1):9–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Sun Y, Jiang X, Price BD (2010) Tip60: connecting chromatin to DNA damage signaling. Cell Cycle 9(5):930–936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bao J, Sack MN (2010) Protein deacetylation by sirtuins: delineating a post-translational regulatory program responsive to nutrient and redox stressors. Cell Mol Life Sci 67(18):3073–3087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Moss TJ, Wallrath LL (2007) Connections between epigenetic gene silencing and human disease. Mutat Res 618(1–2):163–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Schwartz YB, Kahn TG, Stenberg P, Ohno K, Bourgon R, Pirrotta V (2010) Alternative epigenetic chromatin states of polycomb target genes. PLoS Genet 6(1):e1000805

    Article  PubMed Central  PubMed  Google Scholar 

  8. Vermeulen L, Vanden Berghe W, Beck IM, De Bosscher K, Haegeman G (2009) The versatile role of MSKs in transcriptional regulation. Trends Biochem Sci 34(6):311–318

    Article  CAS  PubMed  Google Scholar 

  9. Chi P, Allis CD, Wang GG (2010) Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705

    Article  CAS  PubMed  Google Scholar 

  11. Sebova K, Fridrichova I (2010) Epigenetic tools in potential anticancer therapy. Anticancer Drug 21(6):565–577

    Article  CAS  Google Scholar 

  12. Eisen JA, Sweder KS, Hanawalt PC (1995) Evolution of the SNF2 family of proteins: subfamilies with distinct sequences and functions. Nucleic Acids Res 23(14):2715–2723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Boyer LA, Logie C, Bonte E, Becker PB, Wade PA, Wolffe AP, Wu C, Imbalzano AN, Peterson CL (2000) Functional delineation of three groups of the ATP-dependent family of chromatin remodeling enzymes. J Biol Chem 275(25):18864–18870

    Article  CAS  PubMed  Google Scholar 

  14. Eberharter A, Becker PB (2004) ATP-dependent nucleosome remodelling: factors and functions. J Cell Sci 117(Pt 17):3707–3711

    Article  CAS  PubMed  Google Scholar 

  15. Miyata T, Oyama T, Mayanagi K, Ishino S, Ishino Y, Morikawa K (2004) The clamploading complex for processive DNA replication. Nat Struct Mol Biol 11:632–636

    Article  CAS  PubMed  Google Scholar 

  16. Iida T, Suetake I, Tajima S, Morioka H, Ohta S, Obuse C, Tsurimoto T (2002) PCNA clamp facilitates action of DNA cytosine methyltransferase 1 on hemimethylated DNA. Genes Cells 7:997–1007

    Article  CAS  PubMed  Google Scholar 

  17. Chuang LS, Ian HI, Koh TW, Ng HH, Xu G, Li BF (1997) Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277:1996–2000

    Article  CAS  PubMed  Google Scholar 

  18. Fan G, Beard C, Chen RZ, Csankovszki G, Sun Y, Siniaia M, Biniszkiewicz D, Bates B, Lee PP, Ku¨hn R, Trumpp A, Poon Chi-Sang, Wilson CB, Jaenisch R (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci 21(3):788–797

    CAS  PubMed  Google Scholar 

  19. Lei H, Oh S, Okano M, Juttermann R, Goss K, Jaenisch R, Li E (1996) De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122:3195–3205

    CAS  PubMed  Google Scholar 

  20. Ito K, Caramori G, Lim S et al (2002) Expression and activity of histone deacetylases (HDACs) in human asthmatic airways. Am J Respir Crit Care Med 166:392–396

    Article  PubMed  Google Scholar 

  21. Cosio BG, Mann B, Ito K et al (2004) Histone acetylase and deacetylase activity in alveolar macrophages and blood monocytes in asthma. Am J Respir Crit Care Med 170:141–147

    Article  PubMed  Google Scholar 

  22. Barnes PJ, Adcock IM, Ito K (2005) Histone acetylation and deacetylation: importance in inflammatory lung diseases. Eur Respir J 25:552–563

    Article  CAS  PubMed  Google Scholar 

  23. Greenhalgh CJ, Hilton DJ (2001) Negative regulation of cytokine signaling. J Leukoc Biol 70:348–356

    CAS  PubMed  Google Scholar 

  24. Larsen L, Ropke C (2002) Suppressors of cytokine signalling: SOCS. APMIS 110:833–844

    Article  CAS  PubMed  Google Scholar 

  25. Verma M, Chattopadhyay BD, Paul BN (2012) Epigenetic regulation of DNMT1 gene in mouse model of asthma disease. Mol Biol Rep 40(3):2357–2368

    Article  PubMed  Google Scholar 

  26. Li Y, Deuring J, Peppelenbosch MP, Kuipers EJ, de Haar C, van der Woude CJ (2012) IL-6 induced DNMT1 mediates SOCS3 promoter hypermethylation in ulcerative colitis related colorectal cancer. Carcinogenesis 10:1889–1896

    Article  Google Scholar 

  27. Espada J, Ballestar E, Fraga MF et al (2004) Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem 279:37175–37184

    Article  CAS  PubMed  Google Scholar 

  28. Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T (2000) DNA methyltransferase DNMT1 associates with histone deacetylase activity. Nat Genet 24:88–91

    Article  CAS  PubMed  Google Scholar 

  29. Ratthe C, Pelletier M, Chiasson S, Girard D (2007) Molecular mechanisms involved in interleukin-4-induced human neutrophils: expression and regulation of suppressor of cytokine signaling. J Leukoc Biol 81:1287–1296

    Article  CAS  PubMed  Google Scholar 

  30. Lee PP, Fitzpatrick DR, Beard C, Lehar S, Jessup, Makar KW, Perez-Melgosa M, Sweetser MT, Schlissel MS, Naguyen S, Cherry SR, Tsai JH, Tuckar SM, Weaver WM, Kelso A, Jaenisch R, Wilson CB (2001) A critical role for DNMT1 and DNA methylation in T cell development, function and survival. Immunity 15:763–774

    Article  CAS  PubMed  Google Scholar 

  31. Craig JM, Wong NC (editor) (2011). Epigenetics: a reference manual. Caister Academic Press. ISBN 978-1-904455-88-2

  32. Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610

    Article  CAS  PubMed  Google Scholar 

  33. Tokita T, Maesawa C, Kimura T, Kotani K, Takahashi K, Akasaka T, Masuda T (2007) Methylation status of the SOCS3 gene in human malignant melanomas. Int J Oncol 30:689–694

    CAS  PubMed  Google Scholar 

  34. Logie C, Tse C, Hansen JC, Peterson CL (1999) The core histone N-terminal domains are required for multiple rounds of catalytic chromatin remodeling by the SWI/SNF and RSC complexes. Biochemistry 38:2514–2522

    Article  CAS  PubMed  Google Scholar 

  35. Morales V, Richard-Foy H (2000) Role of histone N-terminal tails and their acetylation in nucleosome dynamics. Mol Cell Biol 20:7230–7237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Davie JR, Spencer VA (1999) Control of histone modifications. J Cell Biochem Suppl 32–3:141–148

    Article  Google Scholar 

  37. Lee DY, Hayes JJ, Pruss D, Wolffe AP (1993) A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84

    Article  CAS  PubMed  Google Scholar 

  38. Eden S, Hashimshony T, Keshet I, Cedar H, Thorne AW (1998) DNA methylation models histone acetylation. Nature 394:842

    Article  CAS  PubMed  Google Scholar 

  39. Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25:269–277

    Article  CAS  PubMed  Google Scholar 

  40. Murahidy A, Ito M, Adcock IM, Barnes PJ, Ito K (2005) Reduction of histone deacetylase expression and activity in smoking asthmatics: a mechanism of steroid resistance. Proc Am Thorac Soc 2:A889

    Google Scholar 

  41. Thomson NC, Chaudhuri R, Livingston E (2003) Active cigarette smoking and asthma. Clin Exp Allergy 33:1471–1475

    Article  CAS  PubMed  Google Scholar 

  42. Annuziato AT, Seale RL (1983) Histone deacetylation is required for the maturation of newly replicated chromatin. J Biol Chem 258:12675–12684

    Google Scholar 

  43. Kishikawa S, Murata T, Kimura H, Shiota K, Yokoyama KK (2002) Regulation of transcription of the DNMT1 gene by Sp1 and Sp3 zinc finger proteins. Eur J Biochem 269:2961–2970

    Article  CAS  PubMed  Google Scholar 

  44. Kishikawa S, Murata T, Ugai H, Yamazaki T, Yokoyama KK (2003) Control elements of DNMT1 gene are regulated in cell-cycle dependent manner. Nucleic Acids Res Suppl 3:307–308

    Article  CAS  PubMed  Google Scholar 

  45. Ehlting C, Aussinger DH, Bode JG (2005) Sp3 is involved in the regulation of SOCS3 gene expression. Biochem J 387:737–745

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. McCabe MT, Davis JN, Day ML (2005) Regulation of DNA methyltransferase 1 by the pRb/E2F1 pathway. Cancer Res 65:3624–3632

    Article  CAS  PubMed  Google Scholar 

  47. Tan HH, Porter AG (2009) p21WAF1 negatively regulates DNMT1 expression in mammalian cells. Biochem Biophys Res Commun 382:171–176

    Article  CAS  PubMed  Google Scholar 

  48. Xiao H, Chung J, Kao HY, Yang YC (2003) Tip60 is a co-repressor for STAT3. J Biol Chem 278(13):11197–11204

    Article  CAS  PubMed  Google Scholar 

  49. Xu W, Edmondson DG, Roth SY (1998) Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol Cell Biol 18(10):5659–5669

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Jarvis CD, Geiman T, Vila-Storm MP, Osipovich O, Akella U, Candeias S, Nathan I, Durum SK, Muegge K (1996) A novel putative helicase produced in early murine lymphocytes. Gene 169:203–207

    Article  CAS  PubMed  Google Scholar 

  51. Dennis K, Fan T, Geiman T, Yan Q, Muegge K (2001) Lsh, a member of the SNF2 family, is required for genome-wide methylation. Genes Dev 15:2940–2944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. K.C. Gupta, Director, Indian Institute of Toxicology Research for support and encouragement. We would like to express our gratitude to Dr. C. Kesavachandran, Dr. Dhirendra Singh, Dr Mahadeo Kumar, for encouragement and inspiration. I am obliged to technical staff of this institution who helped us to peruse this work. We are thankful to Dr S.L Nagale Immunobiology division who has helped us a lot. I am especially thankful to Dr. Amit Sharma for manuscript preparation. This work was financially supported by the Indian Council of Medical Research, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, M., Chattopadhyay, B.D., Kumar, S. et al. DNA methyltransferase 1(DNMT1) induced the expression of suppressors of cytokine signaling3 (Socs3) in a mouse model of asthma. Mol Biol Rep 41, 4413–4424 (2014). https://doi.org/10.1007/s11033-014-3312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3312-5

Keywords

Navigation