Skip to main content
Log in

Proteolytic clipping of histone tails: the emerging role of histone proteases in regulation of various biological processes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chromatin is a dynamic DNA scaffold structure that responds to a variety of external and internal stimuli to regulate the fundamental biological processes. Majority of the cases chromatin dynamicity is exhibited through chemical modifications and physical changes between DNA and histones. These modifications are reversible and complex signaling pathways involving chromatin-modifying enzymes regulate the fluidity of chromatin. Fluidity of chromatin can also be impacted through irreversible change, proteolytic processing of histones which is a poorly understood phenomenon. In recent studies, histone proteolysis has been implicated as a regulatory process involved in the permanent removal of epigenetic marks from histones. Activities responsible for clipping of histone tails and their significance in various biological processes have been observed in several organisms. Here, we have reviewed the properties of some of the known histone proteases, analyzed their significance in biological processes and have provided future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Rodriguez-Campos A, Azorin F (2007) RNA is an integral component of chromatin that contributes to its structural organization. Plos One 2(11):e1182. doi:10.1371/Journal.Pone.0001182

    PubMed Central  PubMed  Google Scholar 

  2. Heinrichs A (2003) Chromatin-caught in a cage. Nat Rev Mol Cell Bio 4(6):428–429. doi:10.1038/Nrm1134

    CAS  Google Scholar 

  3. Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Bio 13(7):436–447. doi:10.1038/Nrm3382

    CAS  Google Scholar 

  4. Koshland D, Strunnikov A (1996) Mitotic chromosome condensation. Annu Rev Cell Dev Biol 12:305–333. doi:10.1146/annurev.cellbio.12.1.305

    CAS  PubMed  Google Scholar 

  5. Kornberg RD (1977) Structure of chromatin. Annu Rev Biochem 46:931–954. doi:10.1146/annurev.bi.46.070177.004435

    CAS  PubMed  Google Scholar 

  6. Eickbush TH, Moudrianakis EN (1978) The histone core complex: an octamer assembled by two sets of protein–protein interactions. Biochemistry 17(23):4955–4964

    CAS  PubMed  Google Scholar 

  7. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389(6648):251–260. doi:10.1038/38444

    CAS  PubMed  Google Scholar 

  8. Bentley GA, Lewit-Bentley A, Finch JT, Podjarny AD, Roth M (1984) Crystal structure of the nucleosome core particle at 16 A resolution. J Mol Biol 176(1):55–75

    CAS  PubMed  Google Scholar 

  9. Luger K, Rechsteiner TJ, Richmond TJ (1999) Expression and purification of recombinant histones and nucleosome reconstitution. Methods Mol Biol 119:1–16. doi:10.1385/1-59259-681-9:1

    CAS  PubMed  Google Scholar 

  10. Talbert PB, Henikoff S (2010) Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11(4):264–275. doi:10.1038/nrm2861

    CAS  PubMed  Google Scholar 

  11. Millar CB (2013) Organizing the genome with H2A histone variants. Biochem J 449(3):567–579. doi:10.1042/BJ20121646

    CAS  PubMed  Google Scholar 

  12. Boulard M, Bouvet P, Kundu TK, Dimitrov S (2007) Histone variant nucleosomes: structure, function and implication in disease. Sub-cell Biochem 41:71–89

    Google Scholar 

  13. Bednar J, Horowitz RA, Grigoryev SA, Carruthers LM, Hansen JC, Koster AJ, Woodcock CL (1998) Nucleosomes, linker DNA, and linker histone form a unique structural motif that directs the higher-order folding and compaction of chromatin. Proc Natl Acad Sci USA 95(24):14173–14178. doi:10.1073/pnas.95.24.14173

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Grigoryev SA, Woodcock CL (2012) Chromatin organization—The 30 nm fiber. Exp Cell Res 318(12):1448–1455. doi:10.1016/j.yexcr.2012.02.014

    CAS  PubMed  Google Scholar 

  15. Woodcock CL (2005) A milestone in the odyssey of higher-order chromatin structure. Nat Struct Mol Biol 12(8):639–640. doi:10.1038/Nsmb0805-639

    CAS  PubMed  Google Scholar 

  16. Martin RM, Cardoso MC (2010) Chromatin condensation modulates access and binding of nuclear proteins. FASEB J 24(4):1066–1072. doi:10.1096/Fj.08-128959

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Hubner MR, Eckersley-Maslin MA, Spector DL (2013) Chromatin organization and transcriptional regulation. Curr Opin Genet Dev 23(2):89–95. doi:10.1016/j.gde.2012.11.006

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Groth A, Rocha W, Verreault A, Almouzni G (2007) Chromatin challenges during DNA replication and repair. Cell 128(4):721–733. doi:10.1016/j.cell.2007.01.030

    CAS  PubMed  Google Scholar 

  19. Yang H, Ren Q, Zhang Z (2006) Chromosome or chromatin condensation leads to meiosis or apoptosis in stationary yeast (Saccharomyces cerevisiae) cells. FEMS Yeast Res 6(8):1254–1263. doi:10.1111/j.1567-1364.2006.00123.x

    CAS  PubMed  Google Scholar 

  20. Vogler C, Huber C, Waldmann T, Ettig R, Braun L, Izzo A, Daujat S, Chassignet I, Lopez-Contreras AJ, Fernandez-Capetillo O, Dundr M, Rippe K, Langst G, Schneider R (2010) Histone H2A C-terminus regulates chromatin dynamics, remodeling, and histone H1 binding. PLoS Genet 6(12):e1001234. doi:10.1371/journal.pgen.1001234

    PubMed Central  PubMed  Google Scholar 

  21. Wang CY, Hua CY, Hsu HE, Hsu CL, Tseng HY, Wright DE, Hsu PH, Jen CH, Lin CY, Wu MY, Tsai MD, Kao CF (2011) The C-terminus of histone H2B is involved in chromatin compaction specifically at telomeres, independently of its monoubiquitylation at lysine 123. Plos One 6(7):e22209. doi:10.1371/journal.pone.0022209

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Biswas M, Voltz K, Smith JC, Langowski J (2011) Role of histone tails in structural stability of the nucleosome. Plos Comput Biol 7(12):e1002279. doi:10.1371/journal.pcbi.1002279

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Tropberger P, Schneider R (2013) Scratching the (lateral) surface of chromatin regulation by histone modifications. Nat Struct Mol Biol 20(6):657–661. doi:10.1038/Nsmb.2581

    CAS  PubMed  Google Scholar 

  24. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. doi:10.1038/Cr.2011.22

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T (2004) Histone deimination antagonizes arginine methylation. Cell 118(5):545–553. doi:10.1016/j.cell.2004.08.020

    CAS  PubMed  Google Scholar 

  26. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20(3):259–266. doi:10.1038/nsmb.2470

    CAS  PubMed  Google Scholar 

  27. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. doi:10.1016/j.cell.2007.02.005

    CAS  PubMed  Google Scholar 

  28. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    CAS  PubMed  Google Scholar 

  29. Nelson CJ, Santos-Rosa H, Kouzarides T (2006) Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126(5):905–916. doi:10.1016/j.cell.2006.07.026

    CAS  PubMed  Google Scholar 

  30. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev MMBR 64(2):435–459

    CAS  PubMed  Google Scholar 

  31. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15(18):2343–2360. doi:10.1101/gad.927301

    CAS  PubMed  Google Scholar 

  32. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet TIG 20(4):214–220. doi:10.1016/j.tig.2004.02.007

    CAS  PubMed  Google Scholar 

  33. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev MMBR 70(3):789–829. doi:10.1128/MMBR.00040-05

    CAS  PubMed  Google Scholar 

  34. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269. doi:10.1146/annurev.biochem.75.103004.142422

    CAS  PubMed  Google Scholar 

  35. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. doi:10.1146/annurev.biochem.77.062706.153223

    CAS  PubMed  Google Scholar 

  36. Narlikar GJ, Sundaramoorthy R, Owen-Hughes T (2013) Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154(3):490–503. doi:10.1016/j.cell.2013.07.011

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Lorch Y, Maier-Davis B, Kornberg RD (2010) Mechanism of chromatin remodeling. Proc Natl Acad Sci USA 107(8):3458–3462. doi:10.1073/pnas.1000398107

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Hagiwara H, Miyazaki K, Matuo Y, Yamashita J, Horio T (1981) Purification and characterization of alkaline protease and neutral protease from chromatin of rats. Biochim Biophys Acta 660(1):73–82

    CAS  PubMed  Google Scholar 

  39. Gorovsky MA, Keevert JB (1975) Absence of histone F1 in a mitotically dividing, genetically inactive nucleus. Proc Natl Acad Sci USA 72(7):2672–2676

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Allis CD, Allen RL, Wiggins JC, Chicoine LG, Richman R (1984) Proteolytic processing of h1-like histones in chromatin: a physiologically and developmentally regulated event in Tetrahymena micronuclei. J Cell Biol 99(5):1669–1677

    CAS  PubMed  Google Scholar 

  41. Lin R, Cook RG, Allis CD (1991) Proteolytic removal of core histone amino termini and dephosphorylation of histone H1 correlate with the formation of condensed chromatin and transcriptional silencing during Tetrahymena macronuclear development. Genes Dev 5(9):1601–1610

    CAS  PubMed  Google Scholar 

  42. Brandt WF, Von Holt C (1975) Isolation and characterization of the histones from cycad pollen. FEBS Lett 51(1):84–87

    CAS  PubMed  Google Scholar 

  43. Suzuki M, Sugiura M, Ebashi S (1990) Sea urchin protease specific to the SPKK motif in histone. J Biochem 108(3):347–355

    CAS  PubMed  Google Scholar 

  44. Dyson M, Walker JM (1984) Chromatin associated protease from calf thymus. Int J Pept Protein Res 24(3):201–207

    CAS  PubMed  Google Scholar 

  45. Eickbush TH, Watson DK, Moudrianakis EN (1976) A chromatin-bound proteolytic activity with unique specificity for histone H2A. Cell 9(4 PT 2):785–792

    CAS  PubMed  Google Scholar 

  46. Watson DK, Moudrianakis EN (1982) Histone-dependent reconstitution and nucleosomal localization of a nonhistone chromosomal protein: the H2A-specific protease. Biochemistry 21(2):248–256

    CAS  PubMed  Google Scholar 

  47. Panda P, Chaturvedi MM, Panda AK, Suar M, Purohit JS (2013) Purification and characterization of a novel histone H2A specific protease (H2Asp) from chicken liver nuclear extract. Gene 512(1):47–54. doi:10.1016/j.gene.2012.09.098

    CAS  PubMed  Google Scholar 

  48. Okawa Y, Takada K, Minami J, Aoki K, Shibayama H, Ohkawa K (2003) Purification of N-terminally truncated histone H2A–monoubiquitin conjugates from leukemic cell nuclei: probable proteolytic products of ubiquitinated H2A. Int J Biochem Cell Biol 35(11):1588–1600

    CAS  PubMed  Google Scholar 

  49. Lipinska A, Klyszejko-Stefanowicz L (1980) The activity of chromatin-bound protease extracted selectively with histone H2B from calf thymus and rat liver. Int J Biochem 11(3–4):299–303

    CAS  PubMed  Google Scholar 

  50. Tsurugi K, Ogata K (1982) Studies on the serine proteases associated with rat liver chromatin. J Biochem 92(5):1369–1381

    CAS  PubMed  Google Scholar 

  51. Tsurugi K, Ogata K (1986) Effects of DNA and urea on the specificity for H1 histone of the neutral protease B partially-purified from rat liver chromatin. J Biochem 99(1):237–241

    CAS  PubMed  Google Scholar 

  52. Surowy CS, Berger NA (1983) Nucleotide-stimulated proteolysis of histone H1. Proc Natl Acad Sci USA 80(18):5510–5514

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Allis CD, Bowen JK, Abraham GN, Glover CV, Gorovsky MA (1980) Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell 20(1):55–64

    CAS  PubMed  Google Scholar 

  54. Falk MM, Grigera PR, Bergmann IE, Zibert A, Multhaup G, Beck E (1990) Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J Virol 64(2):748–756

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Kaul R, Hoang A, Yau P, Bradbury EM, Wenman WM (1997) The chlamydial EUO gene encodes a histone H1-specific protease. J Bacteriol 179(18):5928–5934

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Mahendra G, Kanungo MS (2000) Age-related and steroid induced changes in the histones of the quail liver. Arch Gerontol Geriatr 30(2):109–114

    CAS  PubMed  Google Scholar 

  57. Sakai K, Akanuma H, Imahori K, Kawashima S (1987) A unique specificity of a calcium activated neutral protease indicated in histone hydrolysis. J Biochem 101(4):911–918

    CAS  PubMed  Google Scholar 

  58. Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135(2):284–294. doi:10.1016/j.cell.2008.09.055

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Santos-Rosa H, Kirmizis A, Nelson C, Bartke T, Saksouk N, Cote J, Kouzarides T (2009) Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol 16(1):17–22. doi:10.1038/nsmb.1534

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Mandal P, Azad GK, Tomar RS (2012) Identification of a novel histone H3 specific protease activity in nuclei of chicken liver. Biochem Biophys Res Commun 421(2):261–267. doi:10.1016/j.bbrc.2012.03.149

    CAS  PubMed  Google Scholar 

  61. Mandal P, Verma N, Chauhan S, Tomar RS (2013) Unexpected histone H3 tail-clipping activity of glutamate dehydrogenase. J Biol Chem 288(26):18743–18757. doi:10.1074/jbc.M113.462531

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Purohit JS, Tomar RS, Panigrahi AK, Pandey SM, Singh D, Chaturvedi MM (2013) Chicken liver glutamate dehydrogenase (GDH) demonstrates a histone H3 specific protease (H3ase) activity in vitro. Biochimie 95(11):1999–2009. doi:10.1016/j.biochi.2013.07.005

    CAS  PubMed  Google Scholar 

  63. Chapman HA, Riese RJ, Shi GP (1997) Emerging roles for cysteine proteases in human biology. Annu Rev Physiol 59:63–88. doi:10.1146/annurev.physiol.59.1.63

    CAS  PubMed  Google Scholar 

  64. Kirschke H, Kembhavi AA, Bohley P, Barrett AJ (1982) Action of rat liver cathepsin L on collagen and other substrates. Biochem J 201(2):367–372

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W (2000) Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J 19(6):1187–1194. doi:10.1093/emboj/19.6.1187

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Guinec N, Dalet-Fumeron V, Pagano M (1993) “In vitro” study of basement membrane degradation by the cysteine proteinases, cathepsins B, B-like and L. digestion of collagen IV, laminin, fibronectin, and release of gelatinase activities from basement membrane fibronectin. Biol Chem Hoppe-Seyler 374(12):1135–1146

    CAS  PubMed  Google Scholar 

  67. Novinec M, Grass RN, Stark WJ, Turk V, Baici A, Lenarcic B (2007) Interaction between human cathepsins K, L, and S and elastins—mechanism of elastinolysis and inhibition by macromolecular inhibitors. J Biol Chem 282(11):7893–7902. doi:10.1074/jbc.M610107200

    CAS  PubMed  Google Scholar 

  68. Lutgens SP, Cleutjens KB, Daemen MJ, Heeneman S (2007) Cathepsin cysteine proteases in cardiovascular disease. FASEB J Off Publ Fed Am Soc Exp Biol 21(12):3029–3041. doi:10.1096/fj.06-7924com

    CAS  Google Scholar 

  69. Liu J, Sukhova GK, Sun JS, Xu WH, Libby P, Shi GP (2004) Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 24(8):1359–1366. doi:10.1161/01.ATV.0000134530.27208.41

    CAS  PubMed  Google Scholar 

  70. Hsieh CS, deRoos P, Honey K, Beers C, Rudensky AY (2002) A role for cathepsin L and cathepsin S in peptide generation for MHC class II presentation. J Immunol 168(6):2618–2625

    CAS  PubMed  Google Scholar 

  71. Rudensky A, Beers C (2006) Lysosomal cysteine proteases and antigen presentation. Ernst Scher Res Found workshop 56:81–95

    Google Scholar 

  72. Honey K, Rudensky AY (2003) Lysosomal cysteine proteases regulate antigen presentation. Nat Rev Immunol 3(6):472–482. doi:10.1038/nri1110

    CAS  PubMed  Google Scholar 

  73. Boudreau F, Lussier CR, Mongrain S, Darsigny M, Drouin JL, Doyon G, Suh ER, Beaulieu JF, Rivard N, Perreault N (2007) Loss of cathepsin L activity promotes claudin-1 overexpression and intestinal neoplasia. FASEB J Off Publ Fed Am Soc Exp Biol 21(14):3853–3865. doi:10.1096/fj.07-8113com

    CAS  Google Scholar 

  74. Reinheckel T, Hagemann S, Dollwet-Mack S, Martinez E, Lohmuller T, Zlatkovic G, Tobin DJ, Maas-Szabowski N, Peters C (2005) The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci 118(Pt 15):3387–3395. doi:10.1242/jcs.02469

    CAS  PubMed  Google Scholar 

  75. Maciewicz RA, Wardale RJ, Etherington DJ, Paraskeva C (1989) Immunodetection of cathepsins B and L present in and secreted from human pre-malignant and malignant colorectal tumour cell lines. Int J cancer J Int du cancer 43(3):478–486

    CAS  Google Scholar 

  76. Menard R, Carmona E, Takebe S, Dufour E, Plouffe C, Mason P, Mort JS (1998) Autocatalytic processing of recombinant human procathepsin L. contribution of both intermolecular and unimolecular events in the processing of procathepsin L in vitro. J Biol Chem 273(8):4478–4484

    CAS  PubMed  Google Scholar 

  77. Ceru S, Konjar S, Maher K, Repnik U, Krizaj I, Bencina M, Renko M, Nepveu A, Zerovnik E, Turk B, Kopitar-Jerala N (2010) Stefin B interacts with histones and cathepsin L in the nucleus. J Biol Chem 285(13):10078–10086. doi:10.1074/jbc.M109.034793

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Goulet B, Sansregret L, Leduy L, Bogyo M, Weber E, Chauhan SS, Nepveu A (2007) Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Mol Cancer Res MCR 5(9):899–907. doi:10.1158/1541-7786.MCR-07-0160

    CAS  PubMed  Google Scholar 

  79. Goulet B, Baruch A, Moon NS, Poirier M, Sansregret LL, Erickson A, Bogyo M, Nepveu A (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14(2):207–219. doi:10.1016/S1097-2765(04)00209-6

    CAS  PubMed  Google Scholar 

  80. Goulet B, Nepveu A (2004) Complete and limited proteolysis in cell cycle progression. Cell Cycle 3(8):986–989

    CAS  PubMed  Google Scholar 

  81. Goulet B, Sansregret L, Leduy L, Bogyo M, Weber E, Chauhan SS, Nepveu A (2007) Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Mol Cancer Res 5(9):899–907. doi:10.1158/1541-7786.Mcr-07-0160

    CAS  PubMed  Google Scholar 

  82. Bulynko YA, Hsing LC, Mason RW, Tremethick DJ, Grigoryev SA (2006) Cathepsin L stabilizes the histone modification landscape on the Y chromosome and pericentromeric heterochromatin. Mol Cell Biol 26(11):4172–4184. doi:10.1128/Mcb.00135-06

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Morin V, Sanchez A, Quinones K, Huidobro JG, Iribarren C, Bustos P, Puchi M, Geneviere AM, Imschenetzky M (2008) Cathepsin L inhibitor I blocks mitotic chromosomes decondensation during cleavage cell cycles of sea urchin embryos. J Cell Physiol 216(3):790–795. doi:10.1002/jcp.21459

    CAS  PubMed  Google Scholar 

  84. Nakagawa T, Roth W, Wong P, Nelson A, Farr A, Deussing J, Villadangos JA, Ploegh H, Peters C, Rudensky AY (1998) Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280(5362):450–453

    CAS  PubMed  Google Scholar 

  85. Roth W, Deussing J, Botchkarev VA, Pauly-Evers M, Saftig P, Hafner A, Schmidt P, Schmahl W, Scherer J, Anton-Lamprecht I, Von Figura K, Paus R, Peters C (2000) Cathepsin L deficiency as molecular defect of furless: hyperproliferation of keratinocytes and pertubation of hair follicle cycling. FASEB J Off Pub Fed Am Soc Exp Biol 14(13):2075–2086. doi:10.1096/fj.99-0970com

    CAS  Google Scholar 

  86. Smith TJ, Peterson PE, Schmidt T, Fang J, Stanley CA (2001) Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J Mol Biol 307(2):707–720. doi:10.1006/jmbi 2001.4499

    CAS  PubMed  Google Scholar 

  87. Hudson RC, Daniel RM (1993) l-Glutamate dehydrogenases—distribution, properties and mechanism. Comp Biochem Phys B 106(4):767–792. doi:10.1016/0305-0491(93)90031-Y

    CAS  Google Scholar 

  88. Mastorodemos V, Kotzamani D, Zaganas I, Arianoglou G, Latsoudis H, Plaitakis A (2009) Human GLUD1 and GLUD2 glutamate dehydrogenase localize to mitochondria and endoplasmic reticulum. Biochem Cell Biol-Biochim Et Biol Cell 87(3):505–516. doi:10.1139/O09-008

    CAS  Google Scholar 

  89. Colon AD, Plaitakis A, Perakis A, Berl S, Clarke DD (1986) Purification and characterization of a soluble and a particulate glutamate-dehydrogenase from rat-brain. J Neurochem 46(6):1811–1819

    CAS  PubMed  Google Scholar 

  90. Lee WK, Shin S, Cho SS, Park JS (1999) Purification and characterization of glutamate dehydrogenase as another isoprotein binding to the membrane of rough endoplasmic reticulum. J Cell Biochem 76(2):244–253

    CAS  PubMed  Google Scholar 

  91. Cho SW, Lee J, Choi SY (1995) Two soluble forms of glutamate dehydrogenase isoproteins from bovine brain. Eur J Biochem/FEBS 233(1):340–346

    CAS  Google Scholar 

  92. Rajas F, Gire V, Rousset B (1996) Involvement of a membrane-bound form of glutamate dehydrogenase in the association of lysosomes to microtubules. J Biol Chem 271(47):29882–29890

    CAS  PubMed  Google Scholar 

  93. Prisco GD, Casola L (1975) Detection of structural differences between nuclear and mitochondrial glutamate-dehydrogenases by use of immunoadsorbents. Biochemistry 14(21):4679–4683

    PubMed  Google Scholar 

  94. Mcdaniel HG (1995) Comparison of the primary structure of nuclear and mitochondrial glutamate-dehydrogenase from bovine liver. Arch Biochem Biophys 319(1):316–321. doi:10.1006/abbi 1995.1299

    CAS  PubMed  Google Scholar 

  95. Lorin S, Tol MJ, Bauvy C, Strijland A, Pous C, Verhoeven AJ, Codogno P, Meijer AJ (2013) Glutamate dehydrogenase contributes to leucine sensing in the regulation of autophagy. Autophagy 9(6):850–860. doi:10.4161/auto.24083

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Lee YJ, Kim KJ, Kang HY, Kim HR, Maeng PJ (2012) Involvement of GDH3-encoded NADP+-dependent glutamate dehydrogenase in yeast cell resistance to stress-induced apoptosis in stationary phase cells. J Biol Chem 287(53):44221–44233. doi:10.1074/jbc.M112.375360

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Amza A, Kadri B, Nassirou B, Yu SN, Stoller NE, Bhosai SJ, Zhou ZX, McCulloch CE, West SK, Bailey RL, Keenan JD, Lietman TM, Gaynor BD (2013) The easiest children to reach are most likely to be infected with ocular chlamydia trachomatis in trachoma endemic areas of Niger. Plos Neglect Trop Dis 7(1):E1983. doi:10.1371/Journal.Pntd.0001983

    Google Scholar 

  98. Brickman TJ, Barry CE 3rd, Hackstadt T (1993) Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity. J Bacteriol 175(14):4274–4281

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Remacha M, Kaul R, Sherburne R, Wenman WM (1996) Functional domains of chlamydial histone H1-like protein. Biochem J 315(Pt 2):481–486

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Tao S, Kaul R, Wenman WM (1991) Identification and nucleotide sequence of a developmentally regulated gene encoding a eukaryotic histone H1-like protein from Chlamydia trachomatis. J Bacteriol 173(9):2818–2822

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Barry CE 3rd, Brickman TJ, Hackstadt T (1993) Hc1-mediated effects on DNA structure: a potential regulator of chlamydial development. Mol Microbiol 9(2):273–283

    CAS  PubMed  Google Scholar 

  102. Pedersen LB, Birkelund S, Christiansen G (1994) Interaction of the Chlamydia trachomatis histone H1-like protein (Hc1) with DNA and RNA causes repression of transcription and translation in vitro. Mol Microbiol 11(6):1085–1098

    CAS  PubMed  Google Scholar 

  103. Christiansen G, Pedersen LB, Koehler JE, Lundemose AG, Birkelund S (1993) Interaction between the Chlamydia trachomatis histone H1-like protein (Hc1) and DNA. J Bacteriol 175(6):1785–1795

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Hackstadt T, Baehr W, Ying Y (1991) Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. Proc Natl Acad Sci USA 88(9):3937–3941

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Beresford PJ, Xia Z, Greenberg AH, Lieberman J (1999) Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation. Immunity 10(5):585–594

    CAS  PubMed  Google Scholar 

  106. Martinvalet D, Zhu P, Lieberman J (2005) Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 22(3):355–370. doi:10.1016/j.immuni.2005.02.004

    CAS  PubMed  Google Scholar 

  107. Martinvalet D, Dykxhoorn DM, Ferrini R, Lieberman J (2008) Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death. Cell 133(4):681–692. doi:10.1016/j.cell.2008.03.032

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Fan Z, Beresford PJ, Zhang D, Xu Z, Novina CD, Yoshida A, Pommier Y, Lieberman J (2003) Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nat Immunol 4(2):145–153. doi:10.1038/ni885

    CAS  PubMed  Google Scholar 

  109. Bell JK, Goetz DH, Mahrus S, Harris JL, Fletterick RJ, Craik CS (2003) The oligomeric structure of human granzyme A is a determinant of its extended substrate specificity. Nat Struct Biol 10(7):527–534. doi:10.1038/Nsb944

    CAS  PubMed  Google Scholar 

  110. Hink-Schauer C, Estebanez-Perpina E, Wilharm E, Fuentes-Prior P, Klinkert W, Bode W, Jenne DE (2002) The 2.2-angstrom crystal structure of human pro-granzyme K reveals a rigid zymogen with unusual features. J Biol Chem 277(52):50923–50933. doi:10.1074/jbc.M207962200

    CAS  PubMed  Google Scholar 

  111. Pasternack MS, Bleier KJ, McInerney TN (1991) Granzyme A binding to target cell proteins. Granzyme A binds to and cleaves nucleolin in vitro. J Biol Chem 266(22):14703–14708

    CAS  PubMed  Google Scholar 

  112. Zhang D, Pasternack MS, Beresford PJ, Wagner L, Greenberg AH, Lieberman J (2001) Induction of rapid histone degradation by the cytotoxic T lymphocyte protease granzyme A. J Biol Chem 276(5):3683–3690. doi:10.1074/jbc.M005390200

    CAS  PubMed  Google Scholar 

  113. Bohm L, Briand G, Sautiere P, Crane-Robinson C (1982) Proteolytic digestion studies of chromatin core-histone structure. Identification of limit peptides from histone H2B. Eur J Biochem/FEBS 123(2):299–303

    CAS  Google Scholar 

  114. Traub U, Traub P (1978) Changes in the microheterogeneity of histone H1 after mengovirus infection of Ehrlich ascites tumor cells. Hoppe-Seyler’s Z Physiol Chem 359(5):581–589

    CAS  PubMed  Google Scholar 

  115. Grigera PR, Tisminetzky SG (1984) Histone H3 modification in BHK cells infected with foot-and-mouth disease virus. Virology 136(1):10–19

    CAS  PubMed  Google Scholar 

  116. Tesar M, Marquardt O (1990) Foot-and-mouth disease virus protease 3C inhibits cellular transcription and mediates cleavage of histone H3. Virology 174(2):364–374

    CAS  PubMed  Google Scholar 

  117. Adams-Cioaba MA, Krupa JC, Xu C, Mort JS, Min J (2011) Structural basis for the recognition and cleavage of histone H3 by cathepsin L. Nat Commun 2:197. doi:10.1038/ncomms1204

    PubMed Central  PubMed  Google Scholar 

  118. Olson ST, Gettins PG (2011) Regulation of proteases by protein inhibitors of the serpin superfamily. Prog Mol Biol Transl Sci 99:185–240. doi:10.1016/B978-0-12-385504-6.00005-1

    CAS  PubMed  Google Scholar 

  119. Silverman GA, Bird PI, Carrell RW, Church FC, Coughlin PB, Gettins PG, Irving JA, Lomas DA, Luke CJ, Moyer RW, Pemberton PA, Remold-O’Donnell E, Salvesen GS, Travis J, Whisstock JC (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276(36):33293–33296. doi:10.1074/jbc.R100016200

    CAS  PubMed  Google Scholar 

  120. Stubbs MT, Laber B, Bode W, Huber R, Jerala R, Lenarcic B, Turk V (1990) The refined 2.4 A X-ray crystal structure of recombinant human stefin B in complex with the cysteine proteinase papain: a novel type of proteinase inhibitor interaction. EMBO J 9(6):1939–1947

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Gomis-Ruth FX, Maskos K, Betz M, Bergner A, Huber R, Suzuki K, Yoshida N, Nagase H, Brew K, Bourenkov GP, Bartunik H, Bode W (1997) Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature 389(6646):77–81. doi:10.1038/37995

    CAS  PubMed  Google Scholar 

  122. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM, Alnemri ES, Fairman R, Shi Y (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11(2):519–527

    CAS  PubMed  Google Scholar 

  123. Jakovcevski M, Akbarian S (2012) Epigenetic mechanisms in neurological disease. Nat Med 18(8):1194–1204. doi:10.1038/nm.2828

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Tarakhovsky A (2010) Tools and landscapes of epigenetics. Nat Immunol 11(7):565–568. doi:10.1038/ni0710-565

    CAS  PubMed  Google Scholar 

  125. Roth SY, Denu JM, Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70:81–120. doi:10.1146/annurev.biochem.70.1.81

    CAS  PubMed  Google Scholar 

  126. Marmorstein R, Roth SY (2001) Histone acetyltransferases: function, structure, and catalysis. Curr Opin Genet Dev 11(2):155–161

    CAS  PubMed  Google Scholar 

  127. Nimura K, Ura K, Kaneda Y (2010) Histone methyltransferases: regulation of transcription and contribution to human disease. J Mol Med (Berl) 88(12):1213–1220. doi:10.1007/s00109-010-0668-4

    CAS  Google Scholar 

  128. Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21(4):564–578. doi:10.1038/cr.2011.42

    PubMed Central  CAS  PubMed  Google Scholar 

  129. Haberland M, Montgomery RL, Olson EN (2009) The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10(1):32–42. doi:10.1038/nrg2485

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Gardner KE, Allis CD, Strahl BD (2011) Operating on chromatin, a colorful language where context matters. J Mol Biol 409(1):36–46. doi:10.1016/j.jmb.2011.01.040

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068. doi:10.1038/Nbt.1685

    CAS  PubMed  Google Scholar 

  132. Bhaumik SR, Smith E, Shilatifard A (2007) Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 14(11):1008–1016. doi:10.1038/nsmb1337

    CAS  PubMed  Google Scholar 

  133. Chi P, Allis CD, Wang GG (2010) Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469. doi:10.1038/nrc2876

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Van der Veer E, Bootsma D (1982) Repair DNA synthesis in heterokaryons during reactivation of chick erythrocytes fused with human diploid fibroblasts or HeLa cells. Exp Cell Res 138(2):469–474

    PubMed  Google Scholar 

  135. Gaziev AI, Kutsyi MP (1988) Histone H1-specific proteinase is associated with the nuclear matrix and is activated by DNA-containing breaks or denatured sites. Dokl Akad Nauk SSSR 299(1):240–242

    CAS  PubMed  Google Scholar 

  136. Gaziev AI, Kutsyi MP (1992) Gamma-irradiated DNA activates histone H1-specific proteinase of rat liver nuclei. Int J Radiat Biol 61(2):169–174

    CAS  PubMed  Google Scholar 

  137. Ferreira H, Somers J, Webster R, Flaus A, Owen-Hughes T (2007) Histone tails and the H3 alphaN helix regulate nucleosome mobility and stability. Mol Cell Biol 27(11):4037–4048. doi:10.1128/MCB.02229-06

    PubMed Central  CAS  PubMed  Google Scholar 

  138. Sperling AS, Grunstein M (2009) Histone H3 N-terminus regulates higher order structure of yeast heterochromatin. Proc Natl Acad Sci USA 106(32):13153–13159. doi:10.1073/pnas.0906866106

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Biswas M, Voltz K, Smith JC, Langowski J (2011) Role of histone tails in structural stability of the nucleosome. PLoS Comput Biol 7(12):e1002279. doi:10.1371/journal.pcbi.1002279

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Eickbush TH, Godfrey JE, Elia MC, Moudrianakis EN (1988) H2a-specific proteolysis as a unique probe in the analysis of the histone octamer. J Biol Chem 263(35):18972–18978

    CAS  PubMed  Google Scholar 

  141. Elia MC, Moudrianakis EN (1988) Regulation of H2a-specific proteolysis by the histone H3:H4 tetramer. J Biol Chem 263(20):9958–9964

    CAS  PubMed  Google Scholar 

  142. Iwasaki W, Miya Y, Horikoshi N, Osakabe A, Taguchi H, Tachiwana H, Shibata T, Kagawa W, Kurumizaka H (2013) Contribution of histone N-terminal tails to the structure and stability of nucleosomes. FEBS Open Bio 3:363–369. doi:10.1016/j.fob.2013.08.007

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Nurse NP, Jimenez-Useche I, Smith IT, Yuan C (2013) Clipping of flexible tails of histones H3 and H4 affects the structure and dynamics of the nucleosome. Biophys J 104(5):1081–1088. doi:10.1016/j.bpj.2013.01.019

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP (2003) The Tudor domain ‘Royal Family’: tudor, plant agenet, chromo, PWWP and MBT domains. Trends Biochem Sci 28(2):69–74. doi:10.1016/S0968-0004(03)00004-5

    CAS  PubMed  Google Scholar 

  145. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040. doi:10.1038/Nsmb1338

    CAS  PubMed  Google Scholar 

  146. Matthews AGW, Kuo AJ, Ramon-Maiques S, Han SM, Champagne KS, Ivanov D, Gallardo M, Carney D, Cheung P, Ciccone DN, Walter KL, Utz PJ, Shi Y, Kutateladze TG, Yang W, Gozani O, Oettinger MA (2007) RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450(7172):1106–1118. doi:10.1038/Nature06431

    PubMed Central  CAS  PubMed  Google Scholar 

  147. Bouazoune K, Kingston RE (2012) Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders. Proc Natl Acad Sci USA 109(47):19238–19243. doi:10.1073/pnas.1213825109

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Bickmore W (2005) Human diseases with underlying defects in chromatin structure and modification. J Med Genet 42:S35–S35

    Google Scholar 

  149. Hendrich B, Bickmore W (2001) Human diseases with underlying defects in chromatin structure and modification. Hum Mol Genet 10(20):2233–2242. doi:10.1093/hmg/10.20.2233

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to apologize to all scientists whose work could not be cited due to space limitation. We are thankful to all members of the Laboratory of Chromatin Biology for critical readings, discussions, or ideas for manuscript preparation. This research work was supported by the Department of Biotechnology (DBT) and Council of Scientific and Industrial Research (CSIR), Govt. of India to RST. CSIR is acknowledged for fellowship support to GKA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghuvir S. Tomar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azad, G.K., Tomar, R.S. Proteolytic clipping of histone tails: the emerging role of histone proteases in regulation of various biological processes. Mol Biol Rep 41, 2717–2730 (2014). https://doi.org/10.1007/s11033-014-3181-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3181-y

Keywords

Navigation