Skip to main content
Log in

SLC30A8 gene polymorphism (rs13266634 C/T) and type 2 diabetes mellitus in south Iranian population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Type 2 diabetes mellitus (T2DM) is a multifactorial metabolic disorder which is characterized by chronic hyperglycemia. T2DM is due to the interplay of genetic susceptibility and environmental factors. Zinc is an important element for insulin storage and secretion. Zinc transporters ensure zinc transportation across the biological membranes and enable the cellular flow of zinc into the extracellular matrix or the intracellular vesicles. Solute carrier family 30 member 8 (SLC30A8) gene encodes zinc transporter protein member 8. The rs13266634 C/T polymorphism in SLC30A8 gene has been reported with higher risk of T2DM in literature. Thus, the present study aimed to investigate the association between rs13266634 polymorphism and T2DM in Fars province, Southern Iran and compare the results with other populations. A total of 306 subjects were collected from the outpatients of Shahid Motahhari clinic affiliated to Shiraz University of Medical Sciences, Shiraz, Iran. These subjects were genotyped using polymerase chain reaction-restriction fragment length polymorphism and validated by direct sequencing. The frequency of CC genotype in diabetic and control groups was 90 (59.6 %) and 89 (57.4 %). The number of CT genotype was 51 (33.8 %) in the case and 49 (31.6 %) in the control group. The TT genotype was 10 (6.6 %) and 17 (11 %) in diabetic and non-diabetic subjects, respectively. No significant difference was found between the normal and T2DM subjects regarding the allelic and genotypic distribution (p = 0.35, OR = 1.19, 95 % CI 0.82–1.7) and (p = 0.94, OR = 1.7, 95 % CI 0.7–3.9). No significant difference was found between the normal and diabetic subjects regarding the rs13266634 C/T polymorphism in SLC30A8 gene. In comparison with other ethnic groups, the C allele frequency in our population was very similar to that of the European but higher than that of the Eastern Asian and lower than the African populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Nyenwe E, Jerkins T, Umpierrez G, Kitabchi A (2011) Management of type 2 diabetes: evolving strategies for the treatment of patients with type 2 diabetes. Metabolism 60:1–23

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Weber MB, Narayan KM (2008) Preventing type 2 diabetes: genes or lifestyle? Prim Care Diabetes 2:65–66

    Article  PubMed  Google Scholar 

  3. Timper K, Donath MY (2012) Diabetes mellitus type 2-the new face of an old lady. Swiss Med Wkly 142:13635–13670

    Google Scholar 

  4. Esteghamati A, Gouya MM, Abbasi M, Delavary A, Alikhani S et al (2008) Prevalence of diabetes and impaired fasting glucose in adult population of Iran, National survey of Risk Factor for Non-Communicable Disease of Iran. Diabetes Care 31:96–98

    Article  PubMed  Google Scholar 

  5. Malecki MT (2005) Genetics of type 2 diabetes mellitus. Diabetes Res Clin Pract 68:10–21

    Article  Google Scholar 

  6. Ridderstrale M, Groop L (2009) Genetic dissection of type 2 diabetes. Mol Cell Endocrinol 297:10–17

    Article  PubMed  Google Scholar 

  7. Gloyn AL, McCarthy MI (2001) The genetics of type 2 diabetes. Best Pract Res Clin Endocrinol Metab 15:293–308

    Article  CAS  PubMed  Google Scholar 

  8. Bonnefond AL, Froguel P, Vaxillaire M (2010) The emerging genetics of type 2 diabetes. Trends Mol Med 16:407–416

    Article  CAS  PubMed  Google Scholar 

  9. Kang ES, Kim MS, Kim YS, Kim CH, Han SJ et al (2008) A polymorphism in the zinc transporter gene, SLC30A8, confers resistance against posttransplantation diabetes mellitus in renal allograft recipients. Diabetes 57:1043–1047

    Article  CAS  PubMed  Google Scholar 

  10. Rutter GA (2010) Think zinc: new roles for zinc in the control of insulin secretion. Islets 2:49–50

    Article  PubMed  Google Scholar 

  11. Xiang J, Ying Li X, Xu M, Hong J, Huang Y et al (2008) Zinc transporter-8 gene (SLC30A8) is associated with type 2 diabetes in Chinese. J Clin Endocrinol Metab 93:4107–4112

    Article  CAS  PubMed  Google Scholar 

  12. Chimienti F, Favier A, Seve M (2005) ZnT-8, a pancreatic beta-cell-specific zinc transporter. Biometals 18:313–317

    Article  CAS  PubMed  Google Scholar 

  13. Chimienti F, Devergnas S, Favier A, Seve M (2004) Identification and cloning of a β-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 53:2330–2337

    Article  CAS  PubMed  Google Scholar 

  14. Xu K, Zha M, Wu X, Yu Z, Yu R et al (2011) Association between rs13266634 C/T polymorphisms of solute carrier family 30 member 8 (SLC30A8) and type 2 diabetes, impaired glucose tolerance, type 1 diabetes: a meta-analysis. Diabetes Res Clin Pract 91:195–202

    Article  CAS  PubMed  Google Scholar 

  15. Huang Q, Yin JY, Dai XP, Wu J, Chen X et al (2010) Association analysis of SLC30A8 rs13266634 and rs16889462 polymorphisms with type 2 diabetes mellitus and repaglinide response in Chinese patients. Eur J Clin Pharmacol 66:1207–1215

    Article  CAS  PubMed  Google Scholar 

  16. Cauchi S, Meyre D, Durand E, Proenca C, Marre M et al (2008) Post genome-wide association studies of novel genes associated with type 2 diabetes show gene–gene interaction and high predictive value. PLoS One 3:2031–2041

    Article  Google Scholar 

  17. Cauchi S, Nead KT, Choquet H, Horber F, Potoczna N et al (2008) The genetic susceptibility to type 2 diabetes may be modulated by obesity status: implications for association studies. BMC Med Genet 9:45–53

    Article  PubMed Central  PubMed  Google Scholar 

  18. Hertel JK, Johansson S, Raeder H, Midthjell K, Lyssenko V et al (2008) Genetic analysis of recently identified type 2 diabetes loci in 1,638 unselected patients with type 2 diabetes and 1858 control participants from a Norwegian population based cohort (the HUNT study). Diabetologia 51:971–977

    Article  CAS  PubMed  Google Scholar 

  19. Potapov VA, Chistiakov DA, Shamkhalova MS, Shestakova MV, Nosikov VV (2010) TCF7L2 rs12255372 and SLC30A8 rs13266634 confer susceptibility to type 2 diabetes in a Russian population. Genetika 46:1123–1131

    CAS  PubMed  Google Scholar 

  20. Xu M, Bi Y, Xu Y, Yu B, Huang Y et al (2010) Combined effects of 19 common variations on type 2 diabetes in Chinese: results from two community-based studies. PLoS One 5:14022–14031

    Article  Google Scholar 

  21. Han X, Luo Y, Ren Q, Zhang X, Wang F et al (2010) Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med Genet 11:81–89

    Article  PubMed Central  PubMed  Google Scholar 

  22. Lee YH, Kang ES, Kim SH, Han SJ, Kim CH et al (2008) Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet 53:991–998

    Article  CAS  PubMed  Google Scholar 

  23. Ng MC, Park KS, Oh B, Tam CH, Cho YM et al (2008) Implication of genetic variants near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type 2 diabetes and obesity in 6,719 Asians. Diabetes 57:2226–2233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Horikoshi M, Hara K, Ito C, Shojima N, Nagai R et al (2007) Variations in the HHEX gene are associated with increased risk of type 2 diabetes in the Japanese population. Diabetologia 50:2461–2466

    Article  CAS  PubMed  Google Scholar 

  25. Chauhan G, Spurgeon CJ, Tabassum R, Bhaskar S, Kulkarni SR et al (2010) Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians. Diabetes 59:2068–2074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kifagi C, Makni K, Boudawara M, Mnif F, Hamza N et al (2011) Association of genetic variations in TCF7L2, SLC30A8, HHEX, LOC387761, and EXT2 with type 2 diabetes mellitus in Tunisia. Genet Test Mol Biomarkers 15:399–405

    Article  CAS  PubMed  Google Scholar 

  27. Lewis JP, Palmer ND, Hicks PJ, Sale MM, Langefeld CD et al (2008) Association analysis in African Americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies. Diabetes 57:2220–2225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Rong R, Hanson RL, Ortiz D, Wiedrich C, Kobes S et al (2009) Association analysis of variation in/near FTO, CDKAL1, SLC30A8, HHEX, EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and related quantitative traits in Pima Indians. Diabetes 58:478–488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sanghera DK, Ortega L, Han S, Singh J, Ralhan SK et al (2008) Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian Sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med Genet 9:59–67

    Article  PubMed Central  PubMed  Google Scholar 

  30. Furukawa Y, Shimada T, Furuta H, Matsuno S, Kusuyama A et al (2008) Polymorphisms in the IDE-KIF11-HHEX gene locus are reproducibly associated with type 2 diabetes in a Japanese population. J Clin Endocrinol Metab 93:310–314

    Article  CAS  PubMed  Google Scholar 

  31. Tabara Y, Osawa H, Kawamoto R, Onuma H, Shimizu I et al (2009) Replication study of candidate genes associated with type 2 diabetes based on genome-wide screening. Diabetes 58:493–498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Mohaddes SM, Karami F, Gharesouran J, Bahrami A (2012) The soluble carrier 30 A8 (SLC30A8) gene polymorphism and risk of diabetes mellitus type 2 in Eastern Azerbijan population of Iran. J Sci Islam Repub Iran 23:15–20

    CAS  Google Scholar 

  33. Jing YL, Sun QM, Bi Y, Shen SM, Zhu DL (2011) SLC30A8 polymorphism and type 2 diabetes risk: evidence from 27 study groups. Nutr Metab Cardiovasc Dis 21:398–405

    Article  CAS  PubMed  Google Scholar 

  34. Weijers RNM (2010) Three-dimensional structure of β-cell- specific zinc transporter, ZnT8, predicted from the type 2 diabetes: associated gene variant SLC30A8 R325W. Diabetol Metab Syndr 2:33–40

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Research Improvement Center of Shiraz University of Medical Sciences, Shiraz, Iran and Ms. A. Keivanshekouh are appreciated for improving the use of English in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negar Azarpira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faghih, H., Khatami, SR., Azarpira, N. et al. SLC30A8 gene polymorphism (rs13266634 C/T) and type 2 diabetes mellitus in south Iranian population. Mol Biol Rep 41, 2709–2715 (2014). https://doi.org/10.1007/s11033-014-3158-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3158-x

Keywords

Navigation