Skip to main content

Advertisement

Log in

Serum differential protein identification of Xinjiang Kazakh esophageal cancer patients based on the two-dimensional liquid-phase chromatography and LTQ MS

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the impact of chemo-radiotherapy on serum protein expression of the esophageal cancer patients and discover potential biomarkers by detecting serum proteins mass spectrometry of the healthy Kazakh people in Xinjiang as well as the patients before and after their chemo-radiotherapy. In order to separate and compare the three serum samples (the healthy group’s, the patients’ before and after chemo-radiotherapy) with two-dimensional protein liquid chromatography system (Proteome LabTM PF-2D), then detect the differential protein spots with linear trap quadruple mass spectrometer (LTQ MS/MS). (1) The Kazakh esophageal cancer patients got 21 expressed protein spots peaks with significant difference after chemo-radiotherapy compared with before; before the treatment there were 10 different expressed protein spots compared with the healthy group, and after it there were four peaks in the expression of protein spots compared with the healthy group. (2) After LTQ mass spectrometric detection, 22 proteins were up-regulated in serum samples of the healthy group, 22 were up-regulated of the patients before medical treatment and 5 were up-regulated after chemo-radiotherapy. (3) 8 proteins including APOA1 can be served as serum markers in Kazakh esophageal cancer diagnosis, and proteins like CLU can be served as serum markers in judging the resistance and sensitivity towards chemo-radiotherapy. (4) The abnormal expressions of APOC2, APOC3, Antithrombin-III in esophageal cancer were discovered for the first time. Specific protein spots related to Xinjiang Kazakh esophageal cancer diagnosis and chemo-radiotherapy can be identified in the serum, which will probably become a maker in Kazakh esophageal cancer diagnosis and therapeutic evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yue-ming Zhang (1988) Distribution of esophageal cancer in Xinjiang. J Xinjiang Med Univ 11:139–145

    Google Scholar 

  2. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1(11):845–867

    Article  CAS  PubMed  Google Scholar 

  3. Hanash SM, Bobek MP, Rickman DS et al (2002) Integrating cancer genomics and proteomics in the post-genome era. Proteomics 2(1):69–75

    Article  CAS  PubMed  Google Scholar 

  4. Zhou F, Guo X, Zhang L et al (2011) The different serum proteomics analysis in patients with esophageal neoplasms treated by chemoradiation in Kazakh nationality in Xinjiang. Oncol Prog 9(3):325–332

    Google Scholar 

  5. Guo X, Abliz A, Wu G et al (2009) Two-dimensional liquid phase chromatographic proteome profiles in Uighur women with uterine cervix cancer. J Cent South Univ (Health Sci) 34(7):624–628

    CAS  Google Scholar 

  6. Zeng T, Ma Y, Xu L et al (2011) A 1:2 case–control Study of Tap2/HLA-DR9 gene polymorphism with esophageal cancer in Kazakh. Cancer Res Prev Treat 38(2):210–213

    CAS  Google Scholar 

  7. Petricoin EF, Ardekani AM, Hitt BA et al (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359(9306):572–577

    Article  CAS  PubMed  Google Scholar 

  8. Hayashida Y, Honda K, Osaka Y et al (2005) Possible prediction of chemoradiosensitivity of esophageal cancer by serum protein profiling. Clin Cancer Res 11(15):8042–8047

    Article  CAS  PubMed  Google Scholar 

  9. Ota Y, Takagi Y, Osaka Y et al (2007) Usefulness of serum protein profiling for prediction of preoperative chemoradiosensitivity of esophageal cancer. Oncol Rep 18(3):653–657

    PubMed  Google Scholar 

  10. Pawar H, Kashyap MK, Sahasrabuddhe NA et al (2011) Quantitative tissue proteomics of esophageal squamous cell carcinoma for novel biomarker discovery. Cancer Biol Ther 12(6):510–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Smith B, Land H (2012) Anticancer activity of the cholesterol exporter ABCA1 gene. Cell Rep 2(3):580–590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ehmann M, Felix K, Hartmann D et al (2007) Identification of potential markers for the detection of pancreatic cancer through comparative serum protein expression profiling. Pancreas 34(2):205–214

    Article  CAS  PubMed  Google Scholar 

  13. Lei T, Zhao X, Jin S et al (2012) Discovery of potential bladder cancer biomarkers by comparative urine proteomics and analysis. Clin Genitourin Cancer 11(1):56–62

    Article  PubMed  Google Scholar 

  14. Van Hemelrijck M, Walldius G, Jungner I et al (2011) Low levels of apolipoprotein A-I and HDL are associated with risk of prostate cancer in the Swedish. MORIS study. Cancer Causes Control 22(7):1011–1019

    Article  PubMed  Google Scholar 

  15. Chen J, Anderson M, Misek DE (2007) Characterization of apolipoprotein and apolipoprotein precursors in pancreatic cancer serum samples via two-dimensional liquid chromatography and mass spectrometry. J Chromatogr A 1162(2):117–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yang Z, Zhang Y, Wang L (2012) Mdm2 is a novel activator of ApoCIII promoter which is antagonized by p53 and SHP inhibition. Biochem Biophys Res Commun 417(2):744–746

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Moore LE, Fung ET, McGuire M et al (2006) Evaluation of apolipoprotein A1 and posttranslationally modified forms of transthyretin as biomarkers for ovarian cancer detection in an independent study population. Cancer Epidemiol Biomarkers Prev 15(9):1641–1646

    Article  CAS  PubMed  Google Scholar 

  18. Ingenbleek Y, Young V (1994) Transthyretin (prealbumin) in health and disease: nutritional implications. Annu Rev Nutr 14:495–533

    Article  CAS  PubMed  Google Scholar 

  19. Power DM, Elias NP, Richardson SJ et al (2000) Evolution of the thyroid hormone-binding protein, transthyretin. Gen Comp Endocrinol 119(3):241–255

    Article  CAS  PubMed  Google Scholar 

  20. Hillbertz NS, Hirsch JM, Jalouli J et al (2012) Viral and molecular aspects of oral cancer. Anticancer Res 32(10):4201–4212

    CAS  PubMed  Google Scholar 

  21. Solórzano C, Angel Mayoral M, Angeles Carlos Mde L et al (2012) Overexpression of glycosylated proteins in cervical cancer recognized by the Machaerocereus eruca agglutinin. Folia Histochem Cytobiol 50(3):398–406

    Article  PubMed  Google Scholar 

  22. Moghanibashi M, Jazii FR, Soheili ZS et al (2012) Proteomics of a new esophageal cancer cell line established from Persian patient. Gene 500(1):124–133

    Article  CAS  PubMed  Google Scholar 

  23. Li N, Zoubeidi A, Beraldi E et al. (2012) GRP78 regulates clusterin stability, retrotranslocation and mitochondrial localization under ER stress in prostate cancer. Oncogene 11. doi:10.1038/onc.2012.212

  24. Yan Y, Luo K, Zhang H et al. (2012) RNA interference-mediated secretory clusterin gene silencing inhibits proliferation and promotes apoptosis of human non-small cell lung cancer cells. Hepatogastroenterology 60(121). doi:10.5754/hge11801

  25. Shiota M, Zardan A, Takeuchi A et al (2012) Clusterin mediates TGF-β-induced epithelial-mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer Res 72(20):5261–5272

    Article  CAS  PubMed  Google Scholar 

  26. Wang C, Jiang K, Kang X et al. (2012) Tumor-derived secretory clusterin induces epithelial-mesenchymal transition and facilitates hepatocellular carcinoma metastasis. Int J Biochem Cell Biol 44:2308–2320. doi:10.1016/j.biocel.2012.09.012

  27. He LR, Liu MZ, Li BK et al (2009) Clusterin as a predictor for chemoradiotherapy sensitivity and patient survival in esophageal squamous cell carcinoma. Cancer Sci 100(12):2354–2360

    Article  CAS  PubMed  Google Scholar 

  28. Diez-Itza I, Vizoso F, Merino AM et al (1994) Expression and prognostic significance of apolipoprotein D in breast cancer. Am J Pathol 144:310–320

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Zeng Z, Hincapie M, Pitteri SJ et al (2011) A proteomics platform combining depletion, multi-lectin affinity chromatography (M-LAC), and isoelectric focusing to study the breast cancer proteome. Anal Chem 83(12):4845–4854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Wu J, Xie X, Liu Y et al (2012) Identification and confirmation of differentially expressed fucosylated glycoproteins in the serum of ovarian cancer patients using a lectin array and LC-MS/MS. J Proteome Res 11(9):4541–4552

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Wang C, Huang X et al (2012) Differential proteome profiling of pleural effusions from lung cancer and benign inflammatory disease patients. Biochim Biophys Acta 1824(4):692–700

    Article  CAS  PubMed  Google Scholar 

  32. Fidan E, Kavgaci H, Orem A et al (2012) Thrombin activatable fibrinolysis inhibitor and thrombin-antithrombin-III-complex levels in patients with gastric.cancer. Tumour Biol 33(5):1519–1525

    Article  CAS  PubMed  Google Scholar 

  33. Lim R, Lappas M, Ahmed N et al (2011) 2D-PAGE of ovarian cancer: analysis of soluble and insoluble fractions using medium-range immobilized pH gradients. Biochem Biophys Res Commun 406(3):408–413

    Article  CAS  PubMed  Google Scholar 

  34. Ajona D, Hsu YF, Corrales L et al (2007) Down-regulation of human complement factor H sensitizes non-small cell lung cancer cells to complement attack and reduces in vivo tumor growth. J Immunol 178(9):5991–5998

    Article  CAS  PubMed  Google Scholar 

  35. Liu Z, Feng JG, Tuersun A (2011) Proteomic identification of differentially-expressed proteins in esophageal cancer in three ethnic groups in Xinjiang. Mol Biol Rep 38(5):3261–3269

    Article  CAS  PubMed  Google Scholar 

  36. Zhang C, Zhang J, Ilyar S (2010) Identification of esophageal carcinoma associated proteins by proteomics in Han, Uygur and Kazakh in Xinjiang China. Xinjiang Medical University, Urumqi

  37. Zhang J, Wang K, Zhang J et al (2011) Using proteomic approach to identify tumor-associated proteins as biomarkers in human esophageal squamous cell carcinoma. J Proteome Res 10(6):2863–2872

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Kelly P, Paulin F, Lamont D et al (2012) Pre-treatment plasma proteomic markers associated with survival in oesophageal cancer. Br J Cancer 106(5):955–961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rai A, Zhang Z, Rosenzweig J et al (2002) Proteomic approaches to tumor marker discovery. Arch Pathol Lab Med 126(12):1518–1526

    CAS  PubMed  Google Scholar 

  40. Hu Y, Zhang SZ, Yu JK et al (2005) SELDI-TOF-MS: the proteomics and bioinformatics approaches in the diagnosis of breast cancer. Breast 14(4):250–255

    Article  PubMed  Google Scholar 

  41. Klade CS, Voss T, Krysteck E et al (2001) Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics 1(7):890–898

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Cui Li is a postgraduate student of the First Affiliated Hospital of Xinjiang Medical University, Zhang Li is the director of the Internal Medicine VIP of the First Affiliated Hospital of Xinjiang Medical University. Zhang is Cui’s tutor. All other authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Li.

Additional information

One of the Projects based on Natural Science Funds of Xinjiang Autonomous Region (2010211A47).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Xia, G., Jianqing, Z. et al. Serum differential protein identification of Xinjiang Kazakh esophageal cancer patients based on the two-dimensional liquid-phase chromatography and LTQ MS. Mol Biol Rep 41, 2893–2905 (2014). https://doi.org/10.1007/s11033-014-3145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3145-2

Keywords

Navigation