Skip to main content
Log in

Effect of dietary n-3 polyunsaturated fatty acids on transcription factor regulation in the bovine endometrium

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Dietary n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation is postulated to have positive effects on fertility. The impact of dietary n-3 PUFA supplementation on physiological and biochemical processes involved in reproduction is likely to be associated with significant alterations in gene expression in key reproductive tissues which is in turn regulated by transcription factors. Beef heifers were supplemented with a rumen protected source of either a saturated fatty acid or high n-3 PUFA diet per animal per day for 45 days and uterine endometrial tissue was harvested post slaughter. A microarray analysis was conducted and bioinformatic tools were employed to evaluate the effect of n-3 PUFA supplementation on gene expression in the bovine endometrium. Clustering of microarray gene expression data was performed to identify co-expressed genes. Functional annotation of each cluster of genes was carried out using Ingenuity Pathway Analysis. Furthermore, oPOSSUM was employed to identify transcription factors involved in gene expression changes due to supplementary PUFA. Gene functions which showed a significant response to n-3 PUFA supplementation included tissue development, immune function and reproductive function. Numerous transcription factors such as FOXD1, FOXD3, NFKB1, ESR1, PGR, FOXA2, NKX3-1 and PPARα were identified as potential regulators of gene expression in the endometrium of cattle supplemented with n-3 PUFA. This study demonstrates the complex nature of the alterations in the transcriptional regulation process in the uterine endometrium of cattle following dietary supplementation which may positively influence the uterine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Diskin MG, Mackey DR, Roche JF, Sreenan JM (2003) Effects of nutrition and metabolic status on circulating hormones and ovarian follicle development in cattle. Anim Reprod Sci 78:345–370

    Article  CAS  PubMed  Google Scholar 

  2. Funston RN (2004) Fat supplementation and reproduction in beef females. J Anim Sci 82:E154–E161

    PubMed  Google Scholar 

  3. Thatcher WW, Bilby TR, Bartolome JA, Silvestre F, Staples CR, Santos JE (2006) Strategies for improving fertility in the modern dairy cow. Theriogenology 65:30–44

    Article  CAS  PubMed  Google Scholar 

  4. Childs S, Hennessy AA, Sreenan JM, Wathes DC, Cheng Z, Stanton C, Diskin MG, Kenny DA (2008) Effect of level of dietary n-3 polyunsaturated fatty acid supplementation on systemic and tissue fatty acid concentrations and on selected reproductive variables in cattle. Theriogenology 70:595–611

    Article  CAS  PubMed  Google Scholar 

  5. Lucy M, Savio J, Badinga L, De La Sota R, Thatcher W (1992) Factors that affect ovarian follicular dynamics in cattle. J Anim Sci 70:3615–3626

    CAS  PubMed  Google Scholar 

  6. Petit HV, Dewhurst RJ, Scollan ND, Proulx JG, Khalid M, Haresign W, Twagiramungu H, Mann GE (2002) Milk production and composition, ovarian function, and prostaglandin secretion of dairy cows fed omega-3 fats. J Dairy Sci 85:889–899

    Article  CAS  PubMed  Google Scholar 

  7. Wathes DC, Abayasekara DR, Aitken RJ (2007) Polyunsaturated fatty acids in male and female reproduction. Biol Reprod 77:190–201

    Article  CAS  PubMed  Google Scholar 

  8. Childs S, Carter F, Lynch CO, Sreenan JM, Lonergan P, Hennessy AA, Kenny DA (2008) Embryo yield and quality following dietary supplementation of beef heifers with n-3 polyunsaturated fatty acids (PUFA). Theriogenology 70(6):992–1003

    Article  CAS  PubMed  Google Scholar 

  9. Lopes CN, Cooke RF, Reis MM, Peres RF, Vasconcelos JL (2011) Strategic supplementation of calcium salts of polyunsaturated fatty acids to enhance reproductive performance of Bos indicus beef cows. J Anim Sci 89:3116–3124

    Article  CAS  PubMed  Google Scholar 

  10. Darwich AS, Neuhoff S, Jamei M, Rostami-Hidjegan A (2010) Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the “Advanced Dissolution, Absorption, Metabolism (ADAM)” model. Curr Drug Metab 11(9):716–729

    Article  CAS  PubMed  Google Scholar 

  11. Waters SM, Coyne GS, Kenny DA, MacHugh DE, Morris DG (2012) Dietary n-3 polyunsaturated fatty acid supplementation alters the expression of genes involved in the control of fertility in the bovine uterine endometrium. Physiol Genomics 44(18):878–888

    Article  CAS  PubMed  Google Scholar 

  12. Garcia-Alcalde F, Blanco A, Shepherd A (2010) An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs. BMC Bioinform 11:551

    Article  Google Scholar 

  13. Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29:1305–1312

    Article  CAS  PubMed  Google Scholar 

  14. Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942

    Article  CAS  PubMed  Google Scholar 

  15. Das M, Dai HK (2007) A survey of DNA motif finding algorithms. BMC Bioinform 8:S21

    Article  Google Scholar 

  16. Sandelin A, Alkema W, Engstrom P, Wasserman WW, Lenhard B (2004) Jaspar: an open access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 32:91–94

    Article  Google Scholar 

  17. Ho Sui SJ, Fulton DL, Arenillas DJ, Kwon AT, Wasserman WW (2007) oPOSSUM: integrated tools for analysis of regulatory motif over-representation. Nucleic Acids Res 35:245–252

    Article  Google Scholar 

  18. Shimizu T, Krebs S, Bauersachs S, Blum H, Wolf E, Miyamoto A (2010) Actions and interactions of progesterone and estrogen on transcriptome profiles of the bovine endometrium. Physiol Genomics 42A:290–300

    Article  CAS  PubMed  Google Scholar 

  19. Mondal M, Schilling B, Folger J, Steibel JP, Buchnick H, Zalman Y, Ireland JJ, Meidan R, Smith GW (2011) Deciphering the luteal transcriptome: potential mechanisms mediating stage-specific luteolytic response of the corpus luteum to prostaglandin F2α. Physiol Genomics 43:447–456

    Article  CAS  PubMed  Google Scholar 

  20. O’Loughlin A, Lynn DJ, McGee M, Doyle S, McCabe M, Earley B (2012) Transcriptomic analysis of the stress response to weaning at housing in bovine leukocytes using RNA-seq technology. BMC Genomics 13:250

    Article  PubMed Central  PubMed  Google Scholar 

  21. Coyne GS, Kenny DA, Childs S, Sreenan JM, Waters SM (2008) Dietary n-3 polyunsaturated fatty acids alter the expression of genes involved in prostaglandin biosynthesis in the bovine uterus. Theriogenology 70:772–782

    Article  CAS  PubMed  Google Scholar 

  22. Coyne GS, Kenny DA, Waters SM (2011) Effect of dietary n-3 polyunsaturated fatty acid supplementation on bovine uterine endometrial and hepatic gene expression of the insulin-like growth factor system. Theriogenology 75(3):500–512

    Article  CAS  PubMed  Google Scholar 

  23. Morris DG, Waters SM, Mccarthy SD, Patton J, Earley B, Fitzpatrick R, Murphy JJ, Diskin MG, Kenny DA, Brass A, Wathes DC (2009) Pleiotropic effects of negative energy balance in the postpartum dairy cow on splenic gene expression: repercussions for innate and adaptive immunity. Physiol Genomics 39:28–37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kadota K, Nakai Y, Shimizu K (2009) Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity. Algorithms Mol Biol 4:7

    Article  PubMed Central  PubMed  Google Scholar 

  26. Liu X, Milo M, Lawrence ND, Rattray M (2006) Probe-level measurement error improves accuracy in detecting differential gene expression. Bioinformatics 22:2107–2113

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Lin KK, Andersen B, Rattray M (2007) Including probe-level uncertainty in model-based gene expression clustering. BMC Bioinform 8:98

    Article  Google Scholar 

  28. Ho Sui SJ, Fulton DL, Arenillas DJ, Kwon AT, Wasserman WW (2007) oPOSSUM: integrated tools for analysis of regulatory motif overrepresentation. Nucleic Acids Res 35:W245–W252

    Article  PubMed Central  PubMed  Google Scholar 

  29. Huang H-D, Lee T-Y, Tzeng S-W, Horng J-T (2005) KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res 33:W226–W229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Bionaz M, Loor JJ (2007) Identification of reference genes for quantitative realtime PCR in the bovine mammary gland during the lactation cycle. Physiol Genomics 29:312–319

    Article  CAS  PubMed  Google Scholar 

  31. Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C, Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037

    Article  CAS  PubMed  Google Scholar 

  32. Loor JJ, Everts RE, Bionaz M, Dann HM, Morin DE, Oliveira R, Rodriguez-Zas SL, Drackley JK, Lewin HA (2007) Nutritioninduced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. Physiol Genomics 32:105–116

    Article  CAS  PubMed  Google Scholar 

  33. Clarke SD, Jump DB (1994) Dietary polyunsaturated fatty acid regulation of gene transcription. Annu Rev Nutr 14:83–98

    Article  CAS  PubMed  Google Scholar 

  34. Jump DB, Clarke SD, Thelen A, Liimatta M, Ren B, Badin M (1996) Dietary polyunsaturated fatty acid regulation of gene transcription. Prog Lipid Res 35:227–241

    Article  CAS  PubMed  Google Scholar 

  35. Calder PC, Yaqoob P (2009) Understanding omega-3 polyunsaturated fatty acids. Postgrad Med 121:148–157

    Article  PubMed  Google Scholar 

  36. Lashkari DA, Derisi JL, Mccusker JH, Namath AF, Gentile C, Hwang SY, Brown PO, Davis RW (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci USA 94:13057–13062

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427

    Article  CAS  PubMed  Google Scholar 

  38. Slonim DK (2002) From patterns to pathways: gene expression data analysis comes of age. Nat Genet 32S:502–508

    Article  Google Scholar 

  39. Zhu M, Wu Q (2008) Transcription network construction for large-scale microarray datasets using a high-performance computing approach. BMC Genomics 9:S5

    Article  PubMed Central  Google Scholar 

  40. Carlsson P, Mahlapuu M (2002) Forkhead transcription factors: key players in development and metabolism. Dev Biol 250:1–23

    Article  CAS  PubMed  Google Scholar 

  41. Lehmann OJ, Sowden JC, Carlsson P, Jordan T, Bhattacharya SS (2003) Fox’s in development and disease. Trends Genet 19:339–344

    Article  CAS  PubMed  Google Scholar 

  42. Pohl BS, Knöchel W (2005) Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. Gene 344:21–32

    Article  CAS  PubMed  Google Scholar 

  43. Hannenhalli S, Kaestner KH (2009) The evolution of Fox genes and their role in development and disease. Nat Rev Genet 10:233–240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Peng SL (2010) Forkhead transcription factors in chronic inflammation. Int J Biochem Cell Biol 42:482–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Herrera E, Marcus R, Li S, Williams SE, Erskine L, Lai E, Mason C (2004) Foxd1 is required for proper formation of the optic chiasm. Development 131:5727–5739

    Article  CAS  PubMed  Google Scholar 

  46. Steiner AB, Engleka MJ, LU Q, Piwarzyk EC, Yaklichkin S, Lefebvre JL, Walters JW, Pineda-Salgado L, Labosky PA, Kessler DS (2006) FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development. Development 133:4827–4838

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Sirotkin AV (2010) Transcription factors and ovarian functions. J Cell Physiol 225:20–26

    Article  CAS  PubMed  Google Scholar 

  48. May MJ, Ghosh S (1997) Rel/NF-kappa B and I kappa B proteins: an overview. Semin Cancer Biol 8:63–73

    Article  CAS  PubMed  Google Scholar 

  49. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-kB activity. Annu Rev Immunol 18:621–663

    Article  CAS  PubMed  Google Scholar 

  50. Ross J, Ashworth M, Mathew D, Reagan P, Ritchey J, Hayashi K, Spencer T, Lucy M, Geisert R (2010) Activation of the transcription factor, nuclear factor kappa-B, during the estrous cycle and early pregnancy in the pig. Reprod Biol Endocrinol 8:39

    Article  PubMed Central  PubMed  Google Scholar 

  51. Lee K-M, Kang B-S, Lee H-L, Son S-J, Hwang S-H, Kim D-S, Park J-S, Cho H-J (2004) Spinal NF-kB activation induces COX-2 upregulation and contributes to inflammatory pain hypersensitivity. Eur J Neurosci 19:3375–3381

    Article  PubMed  Google Scholar 

  52. Poyser NL (1995) The control of prostaglandin production by the endometrium in relation to luteolysis and menstruation. Prostaglandins Leukot Essent Fatty Acids 53(3):147–195

    Article  CAS  PubMed  Google Scholar 

  53. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van de Putte LB, Lipsky PE (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–1073

    CAS  PubMed  Google Scholar 

  54. Thatcher WW, Guzeloglu A, Mattos R, Binelli M, Hansen TR, Pru JK (2001) Uterine–conceptus interactions and reproductive failure in cattle. Theriogenology 56:1435–1450

    Article  CAS  PubMed  Google Scholar 

  55. Caldari-Torres C, Rodriguez-Sallaberry C, Greene ES, Badinga L (2006) Differential effects of n-3 and n-6 fatty acids on prostaglandin F2alpha production by bovine endometrial cells. J Dairy Sci 89:971–977

    Article  CAS  PubMed  Google Scholar 

  56. Walker CG, Meier S, Littlejohn MD, Lehnert K, Roche JR, Mitchell MD (2010) Modulation of the maternal immune system by the pre-implantation embryo. BMC Genomics 11:474

    Article  PubMed Central  PubMed  Google Scholar 

  57. Nakamura H, Kimura T, Ogita K, Koyama S, Tsujie T, Tsutsui T, Shimoya K, Koyama M, Kaneda Y, Murata Y (2004) Alteration of the timing of implantation by in vivo gene transfer: delay of implantation by suppression of nuclear factor kappaB activity and partial rescue by leukemia inhibitory factor. Biochem Biophys Res Commun 321:886–892

    Article  CAS  PubMed  Google Scholar 

  58. Ross JW, Ashworth MD, White FJ, Johnson GA, Ayoubi PJ, DeSilva U, Whitworth KM, Prather RS, Geisert RD (2007) Premature estrogen exposure alters endometrial gene expression to disrupt pregnancy in the pig. Endocrinology 148:4761–4773

    Article  CAS  PubMed  Google Scholar 

  59. Robinson RS, Mann GE, Lamming GE, Wathes DC (2001) Expression of oxytocin, oestrogen and progesterone receptors in uterine biopsy samples throughout the oestrous cycle and early pregnancy in cows. Reproduction 122:965–979

    Article  CAS  PubMed  Google Scholar 

  60. Goff AK (2004) Steroid hormone modulation of prostaglandin secretion in the ruminant endometrium during the estrous cycle. Biol Reprod 71:11–16

    Article  CAS  PubMed  Google Scholar 

  61. Robinson RS, Mann GE, Lamming GE, Wathes DC (1999) The effect of pregnancy on the expression of uterine oxytocin, oestrogen and progesterone receptors during early pregnancy in the cow. J Endocrinol 160:21–33

    Article  CAS  PubMed  Google Scholar 

  62. Robinson RS, Hammond AJ, Wathes DC, Hunter MG, Mann GE (2008) Corpus luteum–endometrium–embryo interactions in the dairy cow: underlying mechanisms and clinical relevance. Reprod Domest Anim 43(2):104–112

    Article  PubMed  Google Scholar 

  63. Mori H, Sakakibara S, Imai T, Nakamura Y, Iijima T, Suzuki A, Yuasa Y, Takeda M, Okano H (2001) Expression of mouse igf2 mRNAbinding protein 3 and its implications for the developing central nervous system. J Neurosci Res 64:132–143

    Article  CAS  PubMed  Google Scholar 

  64. Korkmaz KS, Korkmaz CG, Ragnhildstveit E, Kizildag S, Pretlow TG, Saatcioglu F (2000) Full-length cDNA sequence and genomic organization of human NKX3A—alternative forms and regulation by both androgens and estrogens. Gene 260:25–36

    Article  CAS  PubMed  Google Scholar 

  65. Holmes KA, Song JS, Liu XS, Brown M, Carroll JS (2008) Nk3-1 and LEF-1 function as transcriptional inhibitors of estrogen receptor activity. Cancer Res 68:7380–7385

    Article  CAS  PubMed  Google Scholar 

  66. Lai E, Prezioso VR, Smith E, Litvin O, Costa RH, Darnell JE Jr (1990) HNF-3A, a hepatocyte-enriched transcription factor of novel structure is regulated transcriptionally. Genes Dev 4:1427–1436

    Article  CAS  PubMed  Google Scholar 

  67. Besnard V, Wert SE, Hull WM, Whitsett JA (2004) Immunohistochemical localization of Foxa1 and Foxa2 in mouse embryos and adult tissues. Gene Expr Patterns 5:193–208

    Article  CAS  PubMed  Google Scholar 

  68. Huang W-T, Yu H-C, Hsu C–C, Liao C-F, Gong H-Y, Lin CJ-F, Wu J-L, Weng C-F (2007) Steroid hormones (17[beta]-estradiol and hydrocortisone) upregulate hepatocyte nuclear factor (HNF)-3[beta] and insulin-like growth factors I and II expression in the gonads of tilapia (Oreochromis mossambicus) in vitro. Theriogenology 68:988–1002

    Article  CAS  PubMed  Google Scholar 

  69. Michalik L, Desvergne B, Dreyer C, Gavillet M, Laurini RN, Wahli W (2002) PPAR expression and function during vertebrate development. Int J Dev Biol 46:105–114

    CAS  PubMed  Google Scholar 

  70. MacLaren LA, Guzeloglu A, Michel F, Thatcher WW (2006) Peroxisome proliferator-activated receptor (PPAR) expression in cultured bovine endometrial cells and response to omega-3 fatty acid, growth hormone and agonist stimulation in relation to series 2 prostaglandin production. Domest Anim Endocrinol 30:155–169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by the Irish Dept. of Agriculture, Fisheries and Food (RSF 06-412). We thank the farm staff at the Teagasc Athenry Research Centre for their care of the experimental animals. Advice from Drs. Chris Creevey on the use of the bioinformatic tools employed is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinéad M. Waters.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Heatmap and dendogram of clusters following clustering using the ‘pumaclust’ algorithm showing partitioning of clusters among control (C) and n-3 PUFA (T) supplemented animals. Clusters are labelled 1–7. Supplementary material 1 (TIFF 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waters, S.M., Coyne, G.S., Kenny, D.A. et al. Effect of dietary n-3 polyunsaturated fatty acids on transcription factor regulation in the bovine endometrium. Mol Biol Rep 41, 2745–2755 (2014). https://doi.org/10.1007/s11033-014-3129-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3129-2

Keywords

Navigation