We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content

Advertisement

Log in

In vivo study on the effects of curcumin on the expression profiles of anti-tumour genes (VEGF, CyclinD1 and CDK4) in liver of rats injected with DEN

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In this study we investigated the effects of curcumin, derived from plant Curcuma longa, on oxidative toxicity, and the possible molecular mechanism of antitumour of curcumin in liver cancer rats. Results showed that blood levels of Gamma-glutamyltransferase, aspartate aminotransferase, alanine aminotransferase, glutathione S-transferase, and liver level of MD were significantly decreased after curcumin feeding. Levels of the liver malondialdehyde MDA, nitric oxide and antioxidant enzymes were significantly increased. Moreover, RT-PCR and Western blot analysis results showed that curcumin treatment significantly decreased liver vascular endothelial growth factor (VEGF), CyclinD1 and CDK4 mRNA expression levels and CyclinD1 and CDK4 proteins levels in liver cancer rats. These findings were confirmed by histopathology. It is concluded that curcumin can protect the liver from the damage caused by N-nitrosodiethylamine. Moreover, curcumin has the potential to be used in a therapy for liver cancer. The present data provide evidence to support the presence of free radicals and VEGF, CyclinD1 and CDK4 mRNA in rat tumour cells. Studies are in progress in order to further characterize the role of VEGF, CyclinD1 and CDK4 mRNA in liver cancer cells and in hepatic therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig.3

Similar content being viewed by others

References

  1. Loguercio C, De Girolamo V, De Sio I, Tuccillo C, Ascione A, Baldi F, Budillon G (2001) Non-alcoholic fatty liver disease in an area of southern Italy: main clinical, histological and pathophysiological aspects. J Hepatol 35:568–574

    Article  PubMed  CAS  Google Scholar 

  2. Levi F, Horvath C, Mechkouri M, Roulon A, Bailleul F, Lemaigre G, Reinber GA, Mathe G (1987) Circadian time dependence of murine tolerance for the alkylating agent peptichemio. Eur J Cancer Clin Oncol 23:487–497

    Article  PubMed  CAS  Google Scholar 

  3. Song JG, Nakano S, Ohdo S, Ogawa N (1993) Chronotoxicity and chronopharmacokinetics of methotrexate in mice: modification by feeding schedule. Jpn J Pharmacol 62:373–378

    Article  PubMed  CAS  Google Scholar 

  4. Bjarnason GA, Hrushesky WJM (1994) Cancer chronotherapy. In: Hrushesky WJM (ed) Circadian cancer therapy. CRC Press, Boca Raton, pp 241–263

    Google Scholar 

  5. Cole GM, Teter B, Frautschy SA (2007) Neuroprotective effects of curcumin. Adv Exp Med Biol 595:197–212

    Article  PubMed  Google Scholar 

  6. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  PubMed  CAS  Google Scholar 

  7. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21:8370–8377

    PubMed  CAS  Google Scholar 

  8. Kapoor S, Priyadarsini KI (2001) Protection of radiation-induced protein damage by curcumin. Biophys Chem 92(1–2):119–126

    Article  PubMed  CAS  Google Scholar 

  9. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM (2001) The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21(21):8370–8377

    PubMed  CAS  Google Scholar 

  10. Shukla PK, Khanna VK, Khan MY, Srimal RC (2003) Protective effect of curcumin against lead neurotoxicity in rat. Hum Exp Toxicol 22:653–658

    Article  PubMed  CAS  Google Scholar 

  11. Daniel S, Limpson JL, Dairam A, Watkins GM, Daya S (2004) Through metal binding, curcumin protects against lead and cadmium induced lipid peroxidation in rat brain homogenates and against lead induced tissue damage in rat brain. J Inorg Chem 98:266–275

    CAS  Google Scholar 

  12. Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E (2005) Chemopreventive and therapeutic effects of curcumin. Cancer Lett 223:181–190

    Article  PubMed  CAS  Google Scholar 

  13. Rajeswari A, Sabesan M (2008) Inhibition of monoamine oxidase-B by the polyphenolic compound, curcumin and its metabolite tetrahydrocurcumin, in a model of Parkinson’s disease induced by MPTP neurodegeneration in mice. Inflammopharmacology 16:96–99

    Article  PubMed  CAS  Google Scholar 

  14. Aggarwal B, Kumar A, Bhati AC (2003) Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res 23:363–398

    PubMed  CAS  Google Scholar 

  15. Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann N.Y. Sci 1056:206–217

    Article  CAS  Google Scholar 

  16. Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545:51–64

    Article  PubMed  CAS  Google Scholar 

  17. Yousef IM, El-Demerdash MM, Radwan FME (2008) Sodium arsenite induced biochemical perturbations in rats: ameliorating effect of curcumin. Food Chem Toxicol 48:3506–3511

    Article  Google Scholar 

  18. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431

    Article  PubMed  CAS  Google Scholar 

  19. Beutler E, Duron O, Kelly BM (1963) An improved method for the detection of blood glutathione. J Lab Clin Med 61:882–888

    PubMed  CAS  Google Scholar 

  20. Sharma M, Gupta YK (2002) Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. Life Sci 7:2489–2498

    Article  Google Scholar 

  21. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  PubMed  CAS  Google Scholar 

  22. Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    PubMed  CAS  Google Scholar 

  23. Carlberg I, Mannervik B (1975) Glutathione reductase levels in rat brain. J Biol Chem 250:5475–5480

    PubMed  CAS  Google Scholar 

  24. Guha Mazumder DN (2005) Effect of chronic intake of arsenic contaminated water on liver. Toxicol Appl Pharmacol 206:169–175

    Article  CAS  Google Scholar 

  25. Klaassen CD, Watkin JB (1984) Mechanism of formation, hepatic uptake and biliary excretion. Pharmacol Rev 36:1–67

    PubMed  CAS  Google Scholar 

  26. El-Demerdash FM, Yousef MI, Radwan FME (2009) Ameliorating effect of curcumin on sodium arsenite-induced oxidative damage and lipid peroxidation in different rat organs. Food Chem Toxicol 47:249–254

    Article  PubMed  CAS  Google Scholar 

  27. Halliwell B (2002) Gutteridge JMC. Free radicals in biology and medicine, vol. 3. Oxford University, Oxford, pp 105–245

    Google Scholar 

  28. Mo J, Xia Y, Wade TJ, Schmitt M, Le XC, Dang R, Mumford JL (2006) Chronic arsenic exposure and oxidative stress: OGG1 expression and arsenic exposure nail selenium, and skin hyperkeratosis in Inner Mongolia. Environ Health Perspect 114:835–841

    Article  PubMed  CAS  Google Scholar 

  29. Gupta M, Mazumder UK, Kumar RS, Sivakumar T, Vamsi ML (2004) Antitumor activity and antioxidant status of Caesalpinia bonducella against enrlich ascites carcinoma in Swiss albino mice. J Pharmacol Sci 94:177–184

    Article  PubMed  CAS  Google Scholar 

  30. Niki E, Yoshida Y, Saito Y, Noguchi N (2005) Lipid peroxidation mechanisms, inhibition and biological effects. Biochem Biophys Res Commun 338:668–676

    Article  PubMed  CAS  Google Scholar 

  31. Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858

    Article  PubMed  CAS  Google Scholar 

  32. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF (1983) Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 219:983–985

    Article  PubMed  CAS  Google Scholar 

  33. Gross JL, Moscatelli D, Jaffe EA, Rifkin DB (1982) Plasminogen activator and collagenase production by cultured capillary endothelial cells. J Cell Biol 95:974–981

    Article  PubMed  CAS  Google Scholar 

  34. Nagy JA, Brown LF, Senger, Lanir N, Van de Water L, Dvorak AM, Dvorak HF (1989) Pathogenesis of tumor stroma generation: A critical role for leaky blood vessels and fibrin deposition. Biochim Biophys Acta 948:305–326

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Ling Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C.Z., Huang, W.Z., Zhang, G. et al. In vivo study on the effects of curcumin on the expression profiles of anti-tumour genes (VEGF, CyclinD1 and CDK4) in liver of rats injected with DEN. Mol Biol Rep 40, 5825–5831 (2013). https://doi.org/10.1007/s11033-013-2688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2688-y

Keywords

Navigation