Skip to main content
Log in

The short chain cell-permeable ceramide (C6) restores cell apoptosis and perifosine sensitivity in cultured glioblastoma cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Primary glioblastoma multiforme is the most malignant form of astrocytic tumor with an average survival of approximately 12–14 months. The combination of novel Akt inhibitors with anti-cancer therapeutics has achieved improved anti-tumor efficiency. In the current study, we examined the synergistic anti-cancer ability of Akt inhibitor perifosine in combination with short-chain ceramide (C6) against glioblastoma cells (U87MG and U251MG), and studied the underlying mechanisms. We found that perifosine, which blocked Akt/mammalian target of rapamycin activation, only induced moderate cell death and few cell apoptosis in cultured glioblastoma cells. On the other hand, perifosine administration induced significant protective autophagy, which inhibited cell apoptosis induction. Inhibition of autophagy by 3-methyaldenine or by autophagy-related gene-5 RNA interference significantly enhanced perifosine-induced apoptosis and cytotoxicity. We found that the short chain cell-permeable ceramide (C6) significantly enhanced cytotoxic effects of perifosine in cultured glioblastoma cells. For mechanism study, we observed that ceramide (C6) inhibited autophagy induction to restore cell apoptosis and perifosine sensitivity. In conclusion, our study suggests that autophagy inhibition by ceramide (C6) restores perifosine-induced apoptosis and cytotoxicity in glioblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MTT:

3-[4,5-Dimethylthylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

3-MA:

3-Methyaldenine

ATG-5:

Autophagy-related gene-5

Cq:

Chloroquine

FACS:

Fluorescence-activated cell sorting

GBM:

Glioblastoma multiforme

LC3B:

Light chain 3B

mTOR:

Mammalian target of rapamycin

PI3K:

Phosphatidylinositol 3-kinase

ROS:

Reactive oxygen species

RNAi:

RNA interference

TMZ:

Temozolomide

References

  1. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E, Hess K, Michael C, Miller D, Sawaya R (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198. doi:10.3171/jns.2001.95.2.0190

    Article  PubMed  CAS  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996

    Article  PubMed  CAS  Google Scholar 

  3. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60(3):166–193. doi:10.3322/caac.2006960/3/166

    Article  PubMed  Google Scholar 

  4. Narita Y, Nagane M, Mishima K, Huang HJ, Furnari FB, Cavenee WK (2002) Mutant epidermal growth factor receptor signaling down-regulates p27 through activation of the phosphatidylinositol 3-kinase/Akt pathway in glioblastomas. Cancer Res 62(22):6764–6769

    PubMed  CAS  Google Scholar 

  5. Riemenschneider MJ, Betensky RA, Pasedag SM, Louis DN (2006) AKT activation in human glioblastomas enhances proliferation via TSC2 and S6 kinase signaling. Cancer Res 66(11):5618–5623

    Article  PubMed  CAS  Google Scholar 

  6. Gulati N, Karsy M, Albert L, Murali R, Jhanwar-Uniyal M (2009) Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility. Int J Oncol 35(4):731–740

    PubMed  CAS  Google Scholar 

  7. Almhanna K, Strosberg J, Malafa M (2011) Targeting AKT protein kinase in gastric cancer. Anticancer Res 31(12):4387–4392

    PubMed  CAS  Google Scholar 

  8. Wu P, Hu YZ (2010) PI3 K/Akt/mTOR pathway inhibitors in cancer: a perspective on clinical progress. Curr Med Chem 17(35):4326–4341

    Article  PubMed  CAS  Google Scholar 

  9. Yap TA, Garrett MD, Walton MI, Raynaud F, de Bono JS, Workman P (2008) Targeting the PI3K-AKT-mTOR pathway: progress, pitfalls, and promises. Curr Opin Pharmacol 8(4):393–412. doi:10.1016/j.coph.2008.08.004

    Article  PubMed  CAS  Google Scholar 

  10. Pitter KL, Galban CJ, Galban S, Tehrani OS, Li F, Charles N, Bradbury MS, Becher OJ, Chenevert TL, Rehemtulla A, Ross BD, Holland EC, Hambardzumyan D (2011) Perifosine and CCI 779 co-operate to induce cell death and decrease proliferation in PTEN-intact and PTEN-deficient PDGF-driven murine glioblastoma. PLoS ONE 6(1):e14545. doi:10.1371/journal.pone.0014545

    Article  PubMed  CAS  Google Scholar 

  11. Momota H, Nerio E, Holland EC (2005) Perifosine inhibits multiple signaling pathways in glial progenitors and cooperates with temozolomide to arrest cell proliferation in gliomas in vivo. Cancer Res 65(16):7429–7435. doi:65/16/7429

    Article  PubMed  CAS  Google Scholar 

  12. Clarke J, Butowski N, Chang S (2010) Recent advances in therapy for glioblastoma. Arch Neurol 67(3):279–283. doi:10.1001/archneurol.2010.567/3/279

    Article  PubMed  Google Scholar 

  13. Hilgard P, Klenner T, Stekar J, Nossner G, Kutscher B, Engel J (1997) D-21266, a new heterocyclic alkylphospholipid with antitumour activity. Eur J Cancer 33(3):442–446

    Article  PubMed  CAS  Google Scholar 

  14. Vink SR, Schellens JH, van Blitterswijk WJ, Verheij M (2005) Tumor and normal tissue pharmacokinetics of perifosine, an oral anti-cancer alkylphospholipid. Investig New Drugs 23(4):279–286

    Article  CAS  Google Scholar 

  15. Kondapaka SB, Singh SS, Dasmahapatra GP, Sausville EA, Roy KK (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2(11):1093–1103

    PubMed  CAS  Google Scholar 

  16. Ruiter GA, Verheij M, Zerp SF, van Blitterswijk WJ (2001) Alkyl-lysophospholipids as anticancer agents and enhancers of radiation-induced apoptosis. Int J Radiat Oncol Biol Phys 49(2):415–419

    Article  PubMed  CAS  Google Scholar 

  17. Chiarini F, Del Sole M, Mongiorgi S, Gaboardi GC, Cappellini A, Mantovani I, Follo MY, McCubrey JA, Martelli AM (2008) The novel Akt inhibitor, perifosine, induces caspase-dependent apoptosis and downregulates P-glycoprotein expression in multidrug-resistant human T-acute leukemia cells by a JNK-dependent mechanism. Leukemia 22(6):1106–1116

    Article  PubMed  CAS  Google Scholar 

  18. Hideshima T, Catley L, Yasui H, Ishitsuka K, Raje N, Mitsiades C, Podar K, Munshi NC, Chauhan D, Richardson PG, Anderson KC (2006) Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107(10):4053–4062

    Article  PubMed  CAS  Google Scholar 

  19. Li X, Luwor R, Lu Y, Liang K, Fan Z (2006) Enhancement of antitumor activity of the anti-EGF receptor monoclonal antibody cetuximab/C225 by perifosine in PTEN-deficient cancer cells. Oncogene 25(4):525–535

    PubMed  CAS  Google Scholar 

  20. Fu L, Lin YD, Elrod HA, Yue P, Oh Y, Li B, Tao H, Chen GZ, Shin DM, Khuri FR, Sun SY (2010) c-Jun NH2-terminal kinase-dependent upregulation of DR5 mediates cooperative induction of apoptosis by perifosine and TRAIL. Mol Cancer 9:315

    Article  PubMed  CAS  Google Scholar 

  21. Patel V, Lahusen T, Sy T, Sausville EA, Gutkind JS, Senderowicz AM (2002) Perifosine, a novel alkylphospholipid, induces p21(WAF1) expression in squamous carcinoma cells through a p53-independent pathway, leading to loss in cyclin-dependent kinase activity and cell cycle arrest. Cancer Res 62(5):1401–1409

    PubMed  CAS  Google Scholar 

  22. Rahmani M, Reese E, Dai Y, Bauer C, Payne SG, Dent P, Spiegel S, Grant S (2005) Coadministration of histone deacetylase inhibitors and perifosine synergistically induces apoptosis in human leukemia cells through Akt and ERK1/2 inactivation and the generation of ceramide and reactive oxygen species. Cancer Res 65(6):2422–2432

    Article  PubMed  CAS  Google Scholar 

  23. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW, Tymianski M (2002) Treatment of ischemic brain damage by perturbing NMDA receptor–PSD-95 protein interactions. Science 298(5594):846–850. doi:10.1126/science.1072873

    Article  PubMed  CAS  Google Scholar 

  24. Ji C, Yang YL, Yang Z, Tu Y, Cheng L, Chen B, Xia JP, Sun WL, Su ZL, He L, Bi ZG (2012) Perifosine sensitizes UVB-induced apoptosis in skin cells: new implication of skin cancer prevention? Cell Signal 24(9):1781–1789. doi:S0898-6568(12)00140-4

    Article  PubMed  CAS  Google Scholar 

  25. Chen MB, Wu XY, Tao GQ, Liu CY, Chen J, Wang LQ, Lu PH (2012) Perifosine sensitizes curcumin induced anti-colorectal cancer effects by targeting multiple signaling pathways both in vivo and in vitro. Int J Cancer 131:2487–2498. doi:10.1002/ijc.27548

    Article  PubMed  CAS  Google Scholar 

  26. Sun H, Yu T, Li J (2011) Co-administration of perifosine with paclitaxel synergistically induces apoptosis in ovarian cancer cells: more than just AKT inhibition. Cancer Lett 310(1):118–128. doi:10.1016/j.canlet.2011.06.010S0304-3835(11)00346-6

    Article  PubMed  CAS  Google Scholar 

  27. Wu CH, Cao C, Kim JH, Hsu CH, Wanebo HJ, Bowen WD, Xu J, Marshall J (2012) Trojan-horse nanotube on-command intracellular drug delivery. Nano Lett 12(11):5475–5480. doi:10.1021/nl301865c

    Article  PubMed  CAS  Google Scholar 

  28. Zhu QY, Wang Z, Ji C, Cheng L, Yang YL, Ren J, Jin YH, Wang QJ, Gu XJ, Bi ZG, Hu G, Yang Y (2011) C6-ceramide synergistically potentiates the anti-tumor effects of histone deacetylase inhibitors via AKT dephosphorylation and alpha-tubulin hyperacetylation both in vitro and in vivo. Cell Death Dis 2:e117

    Article  PubMed  Google Scholar 

  29. van Lummel M, van Blitterswijk WJ, Vink SR, Veldman RJ, van der Valk MA, Schipper D, Dicheva BM, Eggermont AM, ten Hagen TL, Verheij M, Koning GA (2011) Enriching lipid nanovesicles with short-chain glucosylceramide improves doxorubicin delivery and efficacy in solid tumors. Faseb J 25(1):280–289

    Article  PubMed  Google Scholar 

  30. Tong Y, Liu YY, You LS, Qian WB (2012) Perifosine induces protective autophagy and upregulation of ATG5 in human chronic myelogenous leukemia cells in vitro. Acta Pharmacol Sin 33(4):542–550. doi:10.1038/aps.2011.192

    Article  PubMed  CAS  Google Scholar 

  31. Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6(9):729–734. doi:nrc1974

    Article  PubMed  CAS  Google Scholar 

  32. Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12(1):9–22. doi:S1535-6108(07)00151-1

    Article  PubMed  CAS  Google Scholar 

  33. Sun SY (2010) Enhancing perifosine’s anticancer efficacy by preventing autophagy. Autophagy 6(1):184–185. doi:10816

    Article  PubMed  Google Scholar 

  34. Fu L, Kim YA, Wang X, Wu X, Yue P, Lonial S, Khuri FR, Sun SY (2009) Perifosine inhibits mammalian target of rapamycin signaling through facilitating degradation of major components in the mTOR axis and induces autophagy. Cancer Res 69(23):8967–8976. doi:10.1158/0008-5472.CAN-09-2190

    Article  PubMed  CAS  Google Scholar 

  35. Liu YQ, Cheng X, Guo LX, Mao C, Chen YJ, Liu HX, Xiao QC, Jiang S, Yao ZJ, Zhou GB (2012) Identification of an annonaceous acetogenin mimetic, AA005, as an AMPK activator and autophagy inducer in colon cancer cells. PLoS ONE 7(10):e47049. doi:10.1371/journal.pone.0047049

    Article  PubMed  CAS  Google Scholar 

  36. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. doi:ncb2152

    Article  PubMed  CAS  Google Scholar 

  37. Din FV, Valanciute A, Houde VP, Zibrova D, Green KA, Sakamoto K, Alessi DR, Dunlop MG (2012) Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology 142 7:1504–1515, e1503

    Google Scholar 

  38. Tanida I, Ueno T, Kominami E (2004) Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J Biol Chem 279(46):47704–47710. doi:10.1074/jbc.M407016200

    Article  PubMed  CAS  Google Scholar 

  39. Mizushima N, Sugita H, Yoshimori T, Ohsumi Y (1998) A new protein conjugation system in human. The counterpart of the yeast Apg12p conjugation system essential for autophagy. J Biol Chem 273(51):33889–33892

    Article  PubMed  CAS  Google Scholar 

  40. Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395–398. doi:10.1038/26506

    Article  PubMed  CAS  Google Scholar 

  41. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y (2000) A ubiquitin-like system mediates protein lipidation. Nature 408(6811):488–492. doi:10.1038/35044114

    Article  PubMed  CAS  Google Scholar 

  42. Kabeya Y, Mizushima N, Yamamoto A, Oshitani-Okamoto S, Ohsumi Y, Yoshimori T (2004) LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci 117(Pt 13):2805–2812. doi:10.1242/jcs.01131

    Article  PubMed  CAS  Google Scholar 

  43. Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676. doi:10.1038/45257

    Article  PubMed  CAS  Google Scholar 

  44. Obeid LM, Hannun YA (1995) Ceramide: a stress signal and mediator of growth suppression and apoptosis. J Cell Biochem 58(2):191–198. doi:10.1002/jcb.240580208

    Article  PubMed  CAS  Google Scholar 

  45. Hannun YA, Obeid LM (1995) Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci 20(2):73–77. doi:S0968-0004

    Article  PubMed  CAS  Google Scholar 

  46. Ji C, Yang B, Yang YL, He SH, Miao DS, He L, Bi ZG (2010) Exogenous cell-permeable C6 ceramide sensitizes multiple cancer cell lines to doxorubicin-induced apoptosis by promoting AMPK activation and mTORC1 inhibition. Oncogene 29(50):6557–6568

    Article  PubMed  CAS  Google Scholar 

  47. Gills JJ, Zhang C, Abu-Asab MS, Castillo SS, Marceau C, LoPiccolo J, Kozikowski AP, Tsokos M, Goldkorn T, Dennis PA (2012) Ceramide mediates nanovesicle shedding and cell death in response to phosphatidylinositol ether lipid analogs and perifosine. Cell Death Dis 3:e340. doi:10.1038/cddis.2012.72

    Article  PubMed  CAS  Google Scholar 

  48. Yao C, Wei JJ, Wang ZY, Ding HM, Li D, Yan SC, Yang YJ, Gu ZP (2012) Perifosine induces cell apoptosis in human osteosarcoma cells: new implication for osteosarcoma therapy? Cell Biochem Biophys 65(2):217–227. doi:10.1007/s12013-012-9423-5

    Article  Google Scholar 

  49. Rami A (2009) Review: autophagy in neurodegeneration: firefighter and/or incendiarist? Neuropathol Appl Neurobiol 35(5):449–461. doi:NAN1034

    Article  PubMed  CAS  Google Scholar 

  50. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752. doi:nrm2239

    Article  PubMed  CAS  Google Scholar 

  51. Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Investig 115(10):2679–2688. doi:10.1172/JCI26390

    Article  PubMed  CAS  Google Scholar 

  52. Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23(16):2891–2906. doi:10.1038/sj.onc.1207521

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is funded by national neutral and science foundation of China.

Conflict of interest

The authors declare no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi-ming Zhang or Lin-shan Fu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Ls., Yu, Zq., Zhang, Sm. et al. The short chain cell-permeable ceramide (C6) restores cell apoptosis and perifosine sensitivity in cultured glioblastoma cells. Mol Biol Rep 40, 5645–5655 (2013). https://doi.org/10.1007/s11033-013-2666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2666-4

Keywords

Navigation