Skip to main content

Advertisement

Log in

Investigation of deregulated genes of Notch signaling pathway in human T cell acute lymphoblastic leukemia cell lines and clinical samples

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In diagnostic research challenges, quantitative real-time PCR (QPCR) has been widely utilized in gene expression analysis because of its sensitivity, accuracy, reproducibility, and most importantly, quantitativeness. Real-time PCR base kits are wildly applicable in cancer signaling pathways, especially in cancer investigations. T-cell acute lymphoblastic leukemia (T-ALL) is a type of leukemia that is more common in older children and teenagers. Deregulation of the Notch signaling pathway promotes proliferation and inhibits apoptosis of the lymphoblastic T cells. The aim of this study was to investigate the effect of Notch signaling activation on the expression of target genes using real-time QPCR and further use this method in clinical examination after validation. Two T-ALL cell lines, Jurkat and Molt-4, were used as models for activation of the Notch signaling via over-expression of the Notch1 intracellular domain. Expression analysis was performed for six downstream target genes (NCSTN, APH1, PSEN1, ADAM17, NOTCH1 and C-MYC) which play critical roles in the Notch signaling pathway. The results showed significant difference in the expression of target genes in the deregulated Notch signaling pathway. These results were also verified in 12 clinical samples bearing over-expression of the Notch signaling pathway. Identification of such downstream Notch target genes, which have not been studied inclusively, provides insights into the mechanisms of the Notch function in T cell leukemia, and may help identify novel diagnoses and therapeutic targets in acute lymphoblastic leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References:

  1. Pui CH, Relling MV, Downing JR (2004) Acute lymphoblastic leukemia. N Engl J Med 350(15):1535–1548. doi:10.1056/NEJMra023001

    Article  PubMed  CAS  Google Scholar 

  2. Gilliland DG, Tallman MS (2002) Focus on acute leukemias. Cancer Cell 1(5):417–420

    Article  PubMed  CAS  Google Scholar 

  3. Chadwick N, Zeef L, Portillo V, Fennessy C, Warrander F, Hoyle S, Buckle AM (2009) Identification of novel Notch target genes in T cell leukaemia. Mol Cancer 8:35. doi:10.1186/1476-4598-8-35

    Article  PubMed  Google Scholar 

  4. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66(4):649–661

    Article  PubMed  CAS  Google Scholar 

  5. Weng AP, Ferrando AA, Lee W, Morris JPT, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271. doi:10.1126/science.1102160

    Article  PubMed  CAS  Google Scholar 

  6. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J, Baltimore D (1996) Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 183(5):2283–2291

    Article  PubMed  CAS  Google Scholar 

  7. Wang Z, Li Y, Ahmad A, Azmi AS, Banerjee S, Kong D, Sarkar FH (2010) Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim Biophys Acta 1806(2):258–267. doi:10.1016/j.bbcan.2010.06.001

    PubMed  CAS  Google Scholar 

  8. Lewis HD, Leveridge M, Strack PR, Haldon CD, O’Neil J, Kim H, Madin A, Hannam JC, Look AT, Kohl N, Draetta G, Harrison T, Kerby JA, Shearman MS, Beher D (2007) Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol 14(2):209–219. doi:10.1016/j.chembiol.2006.12.010

    Article  PubMed  CAS  Google Scholar 

  9. Weng AP, Nam Y, Wolfe MS, Pear WS, Griffin JD, Blacklow SC, Aster JC (2003) Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol Cell Biol 23(2):655–664

    Article  PubMed  CAS  Google Scholar 

  10. Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, Barnes KC, O’Neil J, Neuberg D, Weng AP, Aster JC, Sigaux F, Soulier J, Look AT, Young RA, Califano A, Ferrando AA (2006) NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 103(48):18261–18266. doi:10.1073/pnas.0606108103

    Article  PubMed  CAS  Google Scholar 

  11. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, Caparros E, Buteau J, Brown K, Perkins SL, Bhagat G, Agarwal AM, Basso G, Castillo M, Nagase S, Cordon-Cardo C, Parsons R, Zuniga-Pflucker JC, Dominguez M, Ferrando AA (2007) Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 13(10):1203–1210. doi:10.1038/nm1636

    Article  PubMed  CAS  Google Scholar 

  12. Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, Li Y, Wolfe MS, Shachaf C, Felsher D, Blacklow SC, Pear WS, Aster JC (2006) c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20(15):2096–2109. doi:10.1101/gad.1450406

    Article  PubMed  CAS  Google Scholar 

  13. Dunys J, Kawarai T, Wilk S, St George-Hyslop P, Alves da Costa C, Checler F (2006) Catabolism of endogenous and overexpressed APH1a and PEN2: evidence for artifactual involvement of the proteasome in the degradation of overexpressed proteins. Biochem J 394(Pt 2):501–509. doi:10.1042/bj20051197

    PubMed  CAS  Google Scholar 

  14. Murthy A, Shao YW, Narala SR, Molyneux SD, Zuniga-Pflucker JC, Khokha R (2012) Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. Immunity 36(1):105–119. doi:10.1016/j.immuni.2012.01.005

    Article  PubMed  CAS  Google Scholar 

  15. Pamren A, Wanngren J, Tjernberg LO, Winblad B, Bhat R, Naslund J, Karlstrom H (2011) Mutations in nicastrin protein differentially affect amyloid beta-peptide production and Notch protein processing. J Biol Chem 286(36):31153–31158. doi:10.1074/jbc.C111.235267

    Article  PubMed  CAS  Google Scholar 

  16. Rakowski LA, Garagiola DD, Li CM, Decker M, Caruso S, Jones M, Kuick R, Cierpicki T, Maillard I, Chiang MY (2012) Convergence of the ZMIZ1 and NOTCH1 pathways at C-MYC in acute T lymphoblastic leukemias. Cancer Res. doi:10.1158/0008-5472.can-12-1389

    PubMed  Google Scholar 

  17. Tian L, Wu X, Chi C, Han M, Xu T, Zhuang Y (2008) ADAM10 is essential for proteolytic activation of Notch during thymocyte development. Int Immunol 20(9):1181–1187. doi:10.1093/intimm/dxn076

    Article  PubMed  CAS  Google Scholar 

  18. Zhao G, Liu Z, Ilagan MX, Kopan R (2010) Gamma-secretase composed of PS1/Pen2/Aph1a can cleave notch and amyloid precursor protein in the absence of nicastrin. J Neurosci 30(5):1648–1656. doi:10.1523/jneurosci.3826-09.2010

    Article  PubMed  CAS  Google Scholar 

  19. O’Doherty U, Swiggard WJ, Malim MH (2000) Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J Virol 74(21):10074–10080

    Article  PubMed  Google Scholar 

  20. Groves AK (2010) The challenge of hair cell regeneration. Exp Biol Med (Maywood) 235(4):434–446. doi:10.1258/ebm.2009.009281

    Article  CAS  Google Scholar 

Download references

Acknowledgments:

This work was founded by Pasteur Institute of Iran, Tehran. The authors appreciate Stem Cell Technology Research Center, Iran, Tehran, for providing technical support. The authors thank Zahra Masoumi and Lida Langroudi for kindly edition of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Morteza Karimipoor or Reza Mahdian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paryan, M., Mohammadi-Yeganeh, S., Samiee, S.M. et al. Investigation of deregulated genes of Notch signaling pathway in human T cell acute lymphoblastic leukemia cell lines and clinical samples. Mol Biol Rep 40, 5531–5540 (2013). https://doi.org/10.1007/s11033-013-2654-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2654-8

Keywords:

Navigation