Skip to main content

Advertisement

Log in

Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tabacum

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Calnexin (CNX) is an integral membrane protein of endoplasmic reticulum (ER) and is a critical component of ER quality control machinery. It acts as a chaperone and ensures proper folding of newly synthesised glycoproteins. CNX shares a considerable homology with its luminal counterpart calreticulin (CRT). Together, they constitute CNX/CRT cycle which is imperative for proper folding of nascent proteins. CNX deficient organisms develop severe complications because of improper folding of proteins and consequently ER stress. CNX maintains calcium homeostasis by binding to the Ca2+ which is a central node in various signaling pathways. Phosphorylation of cytoplasmic tail of CNX controls the sarco endoplasmic reticulum calcium ATPase and thus the movement of Ca2+ in and out of its store-house, i.e. ER. Our studies on Oryza sativa CNX (OsCNX) reveal constitutive expression at various developmental stages and various tissues, thereby proving its requirement throughout the plant development. Further, its expression under various stress conditions gives an insight of the crosstalk existing between ER stress and abiotic stress signaling. This was confirmed by heterologous expression of OsCNX (OsCNX-HE) in tobacco and the OsCNX-HE lines were observed to exhibit better germination under mannitol stress and survival under dehydration stress conditions. The dehydration tolerance conferred by OsCNX appears to be ABA-dependent pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bollo M, Paredes RM, Holstein D, Zheleznova N, Camacho P, Lechleiter JD (2010) Calcineurin interacts with PERK and dephosphorylates calnexin to relieve ER stress in mammals and frogs. PLoS One 5:e11925

    Article  PubMed  Google Scholar 

  2. Brodsky JL (2007) The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation). Biochem J 404:353–363

    Article  CAS  PubMed  Google Scholar 

  3. Cameron PH, Chevet E, Pluquet O, Thomas DY, Bergeron JJ (2009) Calnexin phosphorylation attenuates the release of partially misfolded alpha 1-antitrypsin to the secretory pathway. J Biol Chem 284:34570–34579

    Article  CAS  PubMed  Google Scholar 

  4. Cao M, Li X (2010) Die for living better: plants modify root system architecture through inducing PCD in root meristem under severe water stress. Plant Signal Behav 5:1645–1646

    Article  PubMed  Google Scholar 

  5. Caplan JL, Zhu X, Mamillapalli P, Marathe R, Anandalakshmi R, Dinesh-Kumar SP (2009) Induced ER chaperones regulate a receptor-like kinase to mediate antiviral innate immune response in plants. Cell Host Microb 6:457–469

    Article  CAS  Google Scholar 

  6. Caramelo JJ, Parodi AJ (2008) Getting in and out from calnexin/calreticulin cycles. J Biol Chem 283:10221–10225

    Article  CAS  PubMed  Google Scholar 

  7. Ceirotti A, Duranti M, Bollini R (1998) Effect of N-glycosylation on the folding and quality control of plant proteins. J Exp Bot 49:1091–1103

    Google Scholar 

  8. Chevet E, Smirle J, Cameron PH, Thomas DY, Bergeron JJ (2010) Calnexin phosphorylation: linking cytoplasmic signaling to endoplasmic reticulum lumenal functions. Sem Cell Dev Biol 21:486–490

    Article  CAS  Google Scholar 

  9. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Annal Biochem 162:156–159

    Article  CAS  Google Scholar 

  10. Costa MDL, Reis PAB, Valente MAS, Irsigler AST, Carvalho CM, Loureiro ME (2008) A new branch of endoplasmic reticulum stress signaling and the osmotic signal converge on plant-specific asparagine-rich proteins to promote cell death. J Biol Chem 283:20209–20219

    Google Scholar 

  11. Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856

    Article  CAS  PubMed  Google Scholar 

  12. Del Bem LE (2011) The evolutionary history of calreticulin and calnexin genes in green plants. Genetica 139:255–259

    Article  PubMed  Google Scholar 

  13. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  14. Duan Y, Zhang W, Li B, Wang Y, Li K, Han C, Zhang Y, Li X (2010) An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol 186:681–695

    Article  CAS  PubMed  Google Scholar 

  15. Ehtesham NZ, Phan TN, Gaikwad A, Sopory SK, Tuteja N (1999) Calnexin from Pisum sativum: cloning of the cDNA and characterization of the encoded protein. DNA Cell Biol 18:853–862

    Article  CAS  PubMed  Google Scholar 

  16. Gao H, Brandizzi F, Benning C, Larkin RM (2008) A membrane-tethered transcription factor defines a branch of the heat stress response in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:16398–16403

    Google Scholar 

  17. Gillikin JW, Zhang F, Coleman CE, Bass HW, Larkins BA, Boston RS (1997) A defective signal peptide tethers the floury-2 zein to the endoplasmic reticulum membrane. Plant Physiol 114:345–352

    Article  CAS  PubMed  Google Scholar 

  18. Goode JH, Settlage SB, Wilson RF, Dewey RE (1995) Isolation of a calnexin homolog from developing soybean seeds. Plant Physiol 108:1341

    Google Scholar 

  19. Huang L, Franklin AE, Hoffman NE (1993) Primary structure and characterization of an Arabidopsis thaliana calnexin-like protein. J Biol Chem 268:6560–6566

    CAS  PubMed  Google Scholar 

  20. Irsigler AST, Costa MDL, Zhang P, Reis PAB, Dewey RE, Boston RS, Fontes EPB (2007) Expression profiling on soybean leaves reveals integration of ER and osmotic-stress pathways. BMC Genomics 8:431

    Article  PubMed  Google Scholar 

  21. Jia XY, Xu CY, Jing RL, Li RZ, Mao XG, Wang JP, Chang XP (2008) Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses. J Exp Bot 59:739–751

    Google Scholar 

  22. Jin H, Hong Z, Su W, Li J (2009) A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum. Proc Natl Acad Sci USA 106:13612–13617

    Article  CAS  PubMed  Google Scholar 

  23. Kamauchi S, Nakatani H, Nakano C, Urade R (2005) Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J 272:3461–3476

    Article  CAS  PubMed  Google Scholar 

  24. Kim MC, Chung WS, Yun D, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    Article  CAS  PubMed  Google Scholar 

  25. Klee CB, Ren H, Wang X (1998) Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367–13370

    Article  CAS  PubMed  Google Scholar 

  26. Kwiatkowski BA, Zielinkska-Kwiatkowska AG, Migdalski A, Kleczkowski LA, Wasilweska LD (1995) Cloning of two cDNAs encoding calnexin-like proteins from maize (Zea mays) leaves: identification of potential calcium-binding domains. Gene 65:219–222

    Article  Google Scholar 

  27. Lederkremer GZ (2009) Glycoprotein folding, quality control and ER-associated degradation. Curr Opin Struct Biol 19:515–523

    Article  CAS  PubMed  Google Scholar 

  28. Liu JX, Howell SH (2010) Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 22:2930–2942

    Article  CAS  PubMed  Google Scholar 

  29. Liu L, Cui F, Li Q, Yin B, Zhang H, Lin B, Wu Y, Xia R, Tang S, Xie Q (2011) The endoplasmic reticulum-associated degradation is necessary for plant salt tolerance. Cell Res 21:957–969

    Article  CAS  PubMed  Google Scholar 

  30. Luan S (2009) The CBL–CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42

    Article  CAS  PubMed  Google Scholar 

  31. Lynch J, Michalak M (2003) Calreticulin is an upstream regulator of calcineurin. Biochem Biophys Res Commun 311:1173–1179

    Article  CAS  PubMed  Google Scholar 

  32. Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7:766–772

    Article  CAS  PubMed  Google Scholar 

  33. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  34. Myhill N, Lynes EM, Nanji JA, Blagoveshchenskaya AD, Fei H, Carmine Simmen K, Cooper TJ, Thomas G, Simmen T (2008) The subcellular distribution of calnexin is mediated by PACS-2. Mol Biol Cell 19:2777–2788

    Article  CAS  PubMed  Google Scholar 

  35. Nash PD, Opas M, Michalak M (1994) Calreticulin: not just another calcium-binding protein. Mol Cell Biochem 135:71–78

    Article  CAS  PubMed  Google Scholar 

  36. Nguyen DT, Kebache S, Fazel A, Wong HN, Jenna S, Emadali A (2004) Nck-dependent activation of extracellular signal-regulated kinase-1 and regulation of cell survival during endoplasmic reticulum stress. Mol Biol Cell 15:4248–4260

    Article  CAS  PubMed  Google Scholar 

  37. Nouri MZ, Komatsu S (2010) Comparative analysis of soybean plasma membrane proteins under osmotic stress using gel-based and LC MS/MS-based proteomics approaches. Proteomics 10:1930–1945

    Article  CAS  PubMed  Google Scholar 

  38. Nouri MZ, Hiraga S, Yanagawa Y, Sunohara Y, Matsumoto H, Komatsu S (2012) Characterization of calnexin in soybean roots and hypocotyls under osmotic stress. Phytochemistry 74:20–29

    Article  CAS  PubMed  Google Scholar 

  39. Ou WJ, Thomas DY, Bell AW, Bergeron JJ (1992) Casein kinase II phosphorylation of signal sequence receptor alpha and the associated membrane chaperone calnexin. J Biol Chem 267:23789–23796

    CAS  PubMed  Google Scholar 

  40. Pham XH, Reddy MK, Ehtesham NZ, Matta B, Tuteja N (2000) A DNA helicase from Pisum sativum is homologous to translation initiation factor and stimulates topoisomerase activity. Plant J 24:219–229

    Article  CAS  PubMed  Google Scholar 

  41. Roderick HL, Lechleiter JD, Camacho P (2000) Cytosolic phosphorylation of calnexin controls intracellular Ca2+ oscillations via an interaction with SERCA2b. J Cell Biol 149:1235–1248

    Article  CAS  PubMed  Google Scholar 

  42. Sarwat M (2011) Calnexin: a candidate for crosstalk of ER stress and abiotic stress in plants. In: Society for experimental biology annual meeting 2011, Glasgow, 1–4 July 2011, p 4.26

  43. Sarwat M, Tuteja N (2007) Calnexin: a versatile calcium binding integral membrane chaperone of endoplasmic reticulum. Calcium Bind Proteins 2:36–43

    Google Scholar 

  44. Sarwat M, Tuteja N (2010) Overexpression of rice calnexin protect transgenic tobacco plants from ER stress. In: Society of experimental biology annual meeting 2010, Prague, 30 June–3 July 2010

  45. Sarwat M, Nabi G, Parvaiz A, Hu X (2013a) Ca2+ signals: the versatile decoders of environmental cues. Crit Rev Biotechnol. 33:97–109

    Google Scholar 

  46. Sarwat M, Naqvi A R, Ahmad P, Ashraf M, Akram NA (2013b) Phytohormones and microRNAs as sensors and regulators of leaf senescence: assigning macro roles to small molecules. Biotech Adv. doi:10.1016/j.biotechadv.2013.02.003

  47. Shirasu K (2009) The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu Rev Plant Biol 60:139–164

    Google Scholar 

  48. Valente MAS, Faria JAQA, Soares-Ramos JRL, Reis PAB, Pinheiro GL, Piovesan ND, Morais AT, Menezes CC, Cano MAO, Fietto LG, Loureiro ME, Aragao FJL, Fontes EPB (2009) The ER luminal binding protein (BiP) mediates an increase in drought tolerance in soybean and delays drought-induced leaf senescence in soybean and tobacco. J Exp Bot 60:533–546

    Article  CAS  PubMed  Google Scholar 

  49. Wang S, Narendra S, Fedoroff N (2007) Heterotrimeric G protein signaling in the Arabidopsis unfolded protein response. Proc Natl Acad Sci USA 104:3817–3822

    Article  CAS  PubMed  Google Scholar 

  50. Weinl S, Kudla J (2009) The CBL–CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528

    Article  CAS  PubMed  Google Scholar 

  51. Wong HN, Ward MA, Bell AW, Chevet E, Bains S, Blackstock WP (1998) Conserved in vivo phosphorylation of calnexin at casein kinase II sites as well as a C/proline-directed kinase site. J Biol Chem 273:17227–17235

    Article  CAS  PubMed  Google Scholar 

  52. Ye C, Dickman MB, Whitham SA, Payton M, Verchot J (2011) The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol 156:741–755

    Article  CAS  PubMed  Google Scholar 

  53. Yoshida H (2007) ER stress and diseases. FEBS J 274:630–658

    Google Scholar 

  54. Zhang K, Kaufman RJ (2004) Signaling the unfolded protein response from the endoplasmic reticulum. J Biol Chem 279:25935–25938

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank Department of Biotechnology, Government of India for the postdoctoral fellowship grant to M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Sarwat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarwat, M., Naqvi, A.R. Heterologous expression of rice calnexin (OsCNX) confers drought tolerance in Nicotiana tabacum . Mol Biol Rep 40, 5451–5464 (2013). https://doi.org/10.1007/s11033-013-2643-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2643-y

Keywords

Navigation