Skip to main content

Advertisement

Log in

miR-146a and miR-150 promote the differentiation of CD133+ cells into T-lymphoid lineage

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs control the genes involved in hematopoietic stem cell (HSCs) survival, proliferation and differentiation. The over-expression of miR-146 and miR-150 has been reported during differentiation of HSCs into T-lymphoid lineage. Therefore, in this study we evaluated the effect of their over-expression on CD133+ cells differentiation to T cells. miR-146a and miR-150 were separately and jointly transduced to human cord blood derived CD133+ cells (>97 % purity). We used qRT-PCR to assess the expression of CD2, CD3ε, CD4, CD8, CD25, T cell receptor alpha (TCR-α) and Ikaros genes in differentiated cells 4 and 8 days after transduction of the miRNAs. Following the over-expression of miR-146a, significant up-regulation of CD2, CD4, CD25 and Ikaros genes were observed (P < 0.01). On the other hand, over-expression of miR-150 caused an increase in the expression of Ikaros, CD4, CD25 and TCR-α. To evaluate the combinatorial effect of miR-146a and miR-150, transduction of both miRNAs was concurrently performed which led to increase in the expression of Ikaros, CD4 and CD3 genes. In conclusion, it seems that the effect of miR-150 and miR-146a on the promotion of T cell differentiation is time-dependant. Moreover, miRNAs could be used either as substitutes or complements of the conventional differentiation protocols for higher efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HSC:

Hematopoietic stem cell

qRT-PCR:

Quantitative reverse transcriptase polymerase chain reaction

TCR:

T cell receptor

CD:

Cluster differentiation

UTR:

Untranslated region

miR:

MicroRNA

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  2. Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z (2003) The microRNA world: small is mighty. Trends Biochem Sci 28:534–540

    Article  PubMed  CAS  Google Scholar 

  3. Georgantas RW 3rd, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM, Civin CI (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA 104:2750–2755

    Article  PubMed  CAS  Google Scholar 

  4. Shivdasani RA (2006) MicroRNAs: regulators of gene expression and cell differentiation. Blood 108:3646–3653

    Article  PubMed  CAS  Google Scholar 

  5. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  PubMed  CAS  Google Scholar 

  6. Chen CZ, Lodish HF (2005) MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol 17:155–165

    Article  PubMed  CAS  Google Scholar 

  7. Garzon R, Croce CM (2008) MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 15:352–358

    Article  PubMed  CAS  Google Scholar 

  8. Ramkissoon SH, Mainwaring LA, Ogasawara Y, Keyvanfar K, McCoy JP Jr, Sloand EM, Kajigaya S, Young NS (2006) Hematopoietic-specific microRNA expression in human cells. Leuk Res 30:643–647

    Article  PubMed  CAS  Google Scholar 

  9. Yu J, Wang F, Yang GH, Wang FL, Ma YN, Du ZW, Zhang JW (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349:59–68

    Article  PubMed  CAS  Google Scholar 

  10. Zhou B, Wang S, Mayr C, Bartel DP, Lodish HF (2007) miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci USA 104:7080–7085

    Article  PubMed  CAS  Google Scholar 

  11. Masaki S, Ohtsuka R, Abe Y, Muta K, Umemura T (2007) Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem Biophys Res Commun 364:509–514

    Article  PubMed  CAS  Google Scholar 

  12. Bruchova H, Merkerova M, Prchal JT (2008) Aberrant expression of microRNA in polycythemia vera. Haematologica 93:1009–1016

    Article  PubMed  CAS  Google Scholar 

  13. Navarro F, Lieberman J (2010) Small RNAs guide hematopoietic cell differentiation and function. J Immunol 184:5939–5947

    Article  PubMed  CAS  Google Scholar 

  14. Bellon M, Lepelletier Y, Hermine O, Nicot C (2009) Deregulation of microRNA involved in hematopoiesis and the immune response in HTLV-I adult T-cell leukemia. Blood 113:4914–4917

    Article  PubMed  CAS  Google Scholar 

  15. Lindsay MA (2008) MicroRNAs and the immune response. Trends Immunol 29:343–351

    Article  CAS  Google Scholar 

  16. Sonkoly E, Pivarcsi A (2009) MicroRNAs in inflammation. Int Rev Immunol 28:535–561

    Article  PubMed  CAS  Google Scholar 

  17. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  Google Scholar 

  18. Hagen JW, Lai EC (2008) MicroRNA control of cell-cell signaling during development and disease. Cell Cycle 7:2327–2332

    PubMed  CAS  Google Scholar 

  19. La Motte-Mohs RN, Herer E, Zuniga-Pflucker JC (2005) Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105:1431–1439

    Article  Google Scholar 

  20. Yang Q, Jeremiah Bell J, Bhandoola A (2010) T-cell lineage determination. Immunol Rev 238:12–22

    Article  PubMed  CAS  Google Scholar 

  21. Rooney CM (2012) Adoptive transfer of virus-directed T cells: will this fly for flu? Cytotherapy 14:133–134

    Article  Google Scholar 

  22. Merkerova M, Belickova M, Bruchova H (2008) Differential expression of microRNAs in hematopoietic cell lineages. Eur J Haematol 81:304–310

    Article  PubMed  CAS  Google Scholar 

  23. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE (1998) A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 4:1038–1045

    Article  CAS  Google Scholar 

  24. De Smedt M, Leclercq G, Vandekerckhove B, Kerre T, Taghon T, Plum J (2011) T-lymphoid differentiation potential measured in vitro is higher in CD34 + CD38−/lo hematopoietic stem cells from umbilical cord blood than from bone marrow and is an intrinsic property of the cells. Haematologica 96:646–654

    Article  PubMed  Google Scholar 

  25. Pelagiadis I, Relakis K, Kalmanti L, Dimitriou H (2012) CD133 immunomagnetic separation: effectiveness of the method for CD133(+) isolation from umbilical cord blood. Cytotherapy 14:701–706

    CAS  Google Scholar 

  26. Rothenberg EV, Zhang J, Li L (2010) Multilayered specification of the T-cell lineage fate. Immunol Rev 238:150–168

    Article  PubMed  CAS  Google Scholar 

  27. Seligmann M, Preud’Homme JL, Brouet JC (1973) B and T cell markers in human proliferative blood diseases and primary immunodeficiencies, with special reference to membrane bound immunoglobulins. Transplant Rev 16:85–113

    PubMed  CAS  Google Scholar 

  28. Gaundar SS, Blyth E, Clancy L, Simms RM, Ma CK, Gottlieb DJ (2012) In vitro generation of influenza-specific polyfunctional CD4+ T cells suitable for adoptive immunotherapy. Cytotherapy 14:182–193

    Article  PubMed  CAS  Google Scholar 

  29. Kathrein KL, Chari S, Winandy S (2008) Ikaros directly represses the notch target gene Hes1 in a leukemia T cell line: implications for CD4 regulation. J Biol Chem 283:10476–10484

    Article  PubMed  CAS  Google Scholar 

  30. Kreslavsky T, Gleimer M, Garbe AI, von Boehmer H (2010) alphabeta versus gammadelta fate choice: counting the T-cell lineages at the branch point. Immunol Rev 238:169–181

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant from Stem Cell Technology Research Center, Tehran, Iran. Also, we particularly thank Dr. Yousof Gheisari for his scientific assistance in manuscript writing and Fatemeh Kohram for language editing.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary figure 1: Picture of vector: pLEX-jRED used for cloning miR-146a (TIFF 90 kb)

11033_2013_2567_MOESM2_ESM.tif

Supplementary figure 2: Fluorescent microscopic picture of HEK cells 48 h after transfection (×100). A: Light microscopic picture of the HEK cells. B: The HEK cells transfected with pLEX-jRED + miR-146a. Scale bar=100µm (TIFF 2506 kb)

Supplementary material 3 (DOC 27 kb)

11033_2013_2567_MOESM4_ESM.tif

Supplementary figure 3: Verification of CD133+ cells separated by flow cytometry. Anti-CD133 and anti-CD34 positive cells percent in R1= 97.4% of total cells. RN1= Q2+Q4 = CD34+ cells, RN2 = Q1+Q2 = CD133+ cells (TIFF 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fallah, P., Arefian, E., Naderi, M. et al. miR-146a and miR-150 promote the differentiation of CD133+ cells into T-lymphoid lineage. Mol Biol Rep 40, 4713–4719 (2013). https://doi.org/10.1007/s11033-013-2567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2567-6

Keywords

Navigation