Skip to main content
Log in

Evaluation of potential reference genes for use in gene expression studies in the conifer pathogen (Heterobasidion annosum)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The basidiomycete Heterobasidion annosum is the causative agent of butt and root rot disease of conifer trees and it’s one of the most destructive conifer pathogen in the northern hemisphere. Because of the intrinsic difficulties in genome manipulation in this fungus, most studies have been focused on gene expression analysis using quantitative real time polymerase chain reaction (qPCR). qPCR is a powerful technique but its reliability resides in the correct selection of a set of reference genes used in the data normalization. In this study, we determined the expression stability of 11 selected reference genes in H. annosum. Almost nothing has so far been published about validation of a set of reference genes to be used in gene expression experiments in this fungus. Eleven reference genes were validated in H. annosum which was grown on three different substrates: pine bark, pine heartwood, and pine sapwood. Bestkeeper and NormFinder Excel-based software were used to evaluate the reference gene transcripts’ stability. The results from these two programs indicated that three reference genes namely Tryp metab, RNA Pol3 TF, and Actin were stable in H. annosum in the conditions studied. Interestingly, the GAPDH transcript which has been extensively used in qPCR data normalization is not the best choice when a wide reference gene selection is available. This work represents the first extensive validation of reference genes in H. annosum providing support for gene expression studies and benefits for the wider forest pathology community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bustin S (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. doi:10.1677/jme.0.0250169

    PubMed  Google Scholar 

  2. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem. doi:10.1373/clinchem.2008.112797

    PubMed  Google Scholar 

  3. López M, Bertolini E, Olmos A, Caruso P, Gorris M, Llop P, Penyalver R, Cambra M (2003) Innovative tools for detection of plant pathogenic viruses and bacteria. Int Microbiol. doi:10.1007/s10123-003-0143-y

    Google Scholar 

  4. Schneider S, Widmer F, Jacot K, Koelliker R, Enkerli J (2012) Spatial distribution of Metarhizium clade 1 in agricultural landscapes with arable land and different semi-natural habitats. Appl Soil Ecol. doi:10.1016/j.apsoil.2011.10.007

    Google Scholar 

  5. Groover AT (2007) Will genomics guide a greener forest biotech? Trends Plant Sci. doi:10.1016/j.tplants.2007.04.005

    PubMed  Google Scholar 

  6. Niemela T, Korhonen K (1998) Taxonomy of the genus Heterobasidion. CAB International, Wallingford

    Google Scholar 

  7. Asiegbu FO, Adomas A, Stenlid J (2005) Conifer root and butt rot caused by Heterobasidion annosum (Fr.) Bref. s.l. Mol Plant Pathol. doi: 10.1111/J.1364-3703.2005.00295.X

  8. Iakovlev A, Olson Å, Elfstrand M, Stenlid J (2004) Differential gene expression during interactions between Heterobasidion annosum and Physisporinus sanguinolentus. FEMS Microbiol Lett. doi:10.1016/j.femsle.2004.10.007

    PubMed  Google Scholar 

  9. Karlsson M, Stenlid J, Olson Å (2007) Two hydrophobin genes from the conifer pathogen Heterobasidion annosum are expressed in aerial hyphae. Mycologia. doi:10.3852/mycologia.99.2.227

    PubMed  Google Scholar 

  10. Yakovlev IA, Hietala AM, Steffenrem A, Solheim H, Fossdal CG (2008) Identification and analysis of differentially expressed Heterobasidion parviporum genes during natural colonization of Norway spruce stems. Fungal Genet Biol. doi:10.1016/j.fgb.2007.10.011

    PubMed  Google Scholar 

  11. Olson A, Aerts A, Asiegbu F, Belbahri L, Bouzid O, Broberg A, Canback B, Coutinho PM, Cullen D, Dalman K, Deflorio G, van Diepen LTA, Dunand C, Duplessis S, Durling M, Gonthier P, Grimwood J, Fossdal CG, Hansson D, Henrissat B, Hietala A, Himmelstrand K, Hoffmeister D, Hogberg N, James TY, Karlsson M, Kohler A, Kuees U, Lee Y, Lin Y, Lind M, Lindquist E, Lombard V, Lucas S, Lunden K, Morin E, Murat C, Park J, Raffaello T, Rouze P, Salamov A, Schmutz J, Solheim H, Stahlberg J, Velez H, de Vries RP, Wiebenga A, Woodward S, Yakovlev I, Garbelotto M, Martin F, Grigoriev IV, Stenlid J (2012) Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol. doi: 10.1111/j.1469-8137.2012.04128.x

  12. Raffaello T, Keriö S, Asiegbu FO (2012) Role of the HaHOG1 MAP kinase in response of the conifer root and but rot pathogen (Heterobasidion annosum) to osmotic and oxidative stress. PLoS One. doi: 10.1371/journal.pone.0031186

  13. Pfaffl M, Tichopad A, Prgomet C, Neuvians T (2004) Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett. doi: 10.1023/B:BILE.0000019559.84305.47

  14. Andersen C, Jensen J, Ørntoft T (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. doi: 10.1158/0008-5472.CAN-04-0496

  15. Vieira A, Talhinhas P, Loureiro A, Duplessis S, Fernandez D, Silva MdC, Paulo OS, Azinheira HG (2011) Validation of RT-qPCR reference genes for in planta expression studies in Hemileia vastatrix, the causal agent of coffee leaf rust. Fungal Biol. doi: 10.1016/j.funbio.2011.07.002

  16. Hacquard S, Veneault-Fourrey C, Delaruelle C, Frey P, Martin F, Duplessis S (2011) Validation of Melampsora larici-populina reference genes for in planta RT-quantitative PCR expression profiling during time-course infection of poplar leaves. Physiol Mol Plant Pathol. doi: 10.1016/j.pmpp.2010.10.003

  17. Yan H, Liou R (2006) Selection of internal control genes for real-time quantitative RT-PCR assays in the oomycete plant pathogen Phytophthora parasitica. Fungal Genet Biol. doi: 10.1016/j.fgb.2006.01.010

  18. Bohle K, Jungebloud A, Göecke Y, Dalpiaz A, Cordes C, Horn H, Hempel DC (2007) Selection of reference genes for normalisation of specific gene quantification data of Aspergillus niger. J Biotechnol. doi: 10.1016/jjbiotee.2007-08.005

  19. Yadav P, Singh DD, Mukesh M, Kataria RS, Yadav A, Mohanty AM, Mishra BP (2012) Identification of suitable housekeeping genes for expression analysis in mammary epithelial cells of buffalo (Bubalus bubalis) during lactation cycle. Livest Sci. doi: 10.1016/j.livsci.2012.04.004

  20. Dheda K, Huggett J, Bustin S, Johnson M, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. BioTechniques. doi:10.2144/3701A0112

  21. Chen K, Fessehaie A, Arora R (2012) Selection of reference genes for normalizing gene expression during seed priming and germination using qPCR in Zea mays and Spinacia oleracea. Plant Mol Biol Rep. doi: 10.1007/s11105-011-0354-x

Download references

Acknowledgments

We thank Dr Sébastien Duplessis, Dr Kirk Overmyer and Luis Orlando Morales for their help and critical discussion. Academy of Finland and Viikki Doctoral Programme in Molecular Biosciences are gratefully acknowledged for research funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Raffaello.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raffaello, T., Asiegbu, F.O. Evaluation of potential reference genes for use in gene expression studies in the conifer pathogen (Heterobasidion annosum). Mol Biol Rep 40, 4605–4611 (2013). https://doi.org/10.1007/s11033-013-2553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2553-z

Keywords

Navigation