Skip to main content
Log in

Bromocriptine inhibits adipogenesis and lipogenesis by agonistic action on α2-adrenergic receptor in 3T3-L1 adipocyte cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The primary goals of the present study were to investigate the inhibitory effects of bromocriptine (BC) on adipogenesis and lipogenesis in 3T3-L1 adipocyte cells as well as to elucidate its molecular mechanism of action. Adipogenic and lipogenic capacity of BC-treated cells was evaluated by oil red-O staining, triglyceride content assay, real-time RT-PCR and immunoblotting. To determine the mechanism responsible for the anti-obesity effect of BC, we applied two methods. Firstly, we knocked down dopamine D2 receptor (D2R) up to 50 % using siRNA. Secondly, we blocked the activity of α2-adrenergic receptor (α2-AR) by yohimbine treatment and monitored its effects on adipogenic and lipogenic events in 3T3-L1 cells. BC decreased the expression levels of adipogenic activators, including Pparα, Pparγ, and Cebpα, as well as major lipogenic target genes, including Me1, Acc1, 6Pgd, Fasn, and Prkaa1. Moreover, BC markedly reduced intracellular nitric oxide formation in a dose-dependent manner and expression of pro-inflammatory genes, Tnfα and Il6, which reflects attenuated pro-inflammatory responses. Further, upon treatment with BC, D2R-deficient cells displayed a significant decrease in lipogenic activity compared to control cells, whereas yohimbine-treated cells exhibited no reduction in lipogenic activity. BC can effectively attenuate adipogenesis and lipogenesis in 3T3-L1 cells by downregulating the expression of lipogenic genes and proteins. Our current experimental data collectively establish that the anti-obesity effects of BC are not D2R-dependent but result from the action of α2-AR in 3T3-L1 adipocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACC:

Acyl CoA carboxylase

AMPK (Prka):

AMP-activated protein kinase (encoded gene)

AR:

Adrenergic receptor

BC:

Bromocriptine

C/ebp :

Gene encoding CCAAT/enhancer-binding protein

DR:

Dopamine receptor

FAS (Fasn):

Fatty acid synthase (encoded gene)

KD:

Knockdown

Lep:

Leptin

Il :

Gene encoding interleukin

Me:

Malic enzyme

NO:

Nitric oxide

Pgd :

Gene encoding phosphogluconate dehydrogenase

PPAR:

Peroxisome proliferator-activated receptor

siRNA:

Small interference RNA

Tnf :

Gene encoding tumor necrosis factor

YB:

yohimbine

References

  1. Cincotta AH, Meier AH (1989) Reductions of body fat stores and total plasma cholesterol and triglyceride concentrations in several species by bromocriptine treatment. Life Sci 45(23):2247–2254

    Article  PubMed  CAS  Google Scholar 

  2. Cincotta AH, MacEachern TA, Meier AH (1993) Bromocriptine redirects metabolism and prevents seasonal onset of obese hyperinsulinemic state in Syrian hamsters. Am J Physiol 264(2 Pt 1):E285–E293

    PubMed  CAS  Google Scholar 

  3. Cincotta AH, Tozzo E, Scislowski PW (1997) Bromocriptine/SKF38393 treatment ameliorates obesity and associated metabolic dysfunctions in obese (ob/ob) mice. Life Sci 61(10):951–956

    Article  PubMed  CAS  Google Scholar 

  4. Janssen GB, Beems RB, Elvers LH, Speijers GJ (2000) Subacute toxicity of alpha-ergocryptine in Sprague-Dawley rats. 2: metabolic and hormonal changes. Food Chem Toxicol 38(8):689–695

    Article  PubMed  CAS  Google Scholar 

  5. Barnett AH, Chapman C, Gailer K, Hayter CJ (1980) Effect of bromocriptine on maturity onset diabetes. Postgrad Med J 56(651):11–14

    Article  PubMed  CAS  Google Scholar 

  6. Cincotta AH, Meier AH, Cincotta M Jr (1999) Bromocriptine improves glycaemic control and serum lipid profile in obese Type 2 diabetic subjects: a new approach in the treatment of diabetes. Expert Opin Investig Drugs 8(10):1683–1707. doi:10.1517/13543784.8.10.1683

    Article  PubMed  CAS  Google Scholar 

  7. Yoshikawa T, Minamiyama Y, Naito Y, Kondo M (1994) Antioxidant properties of bromocriptine, a dopamine agonist. J Neurochem 62(3):1034–1038

    Article  PubMed  CAS  Google Scholar 

  8. Grant P (2011) Improving perioperative diabetes care. Clin Med 11(3):298

    PubMed  Google Scholar 

  9. Kok P, Roelfsema F, Frolich M, van Pelt J, Stokkel MP, Meinders AE, Pijl H (2006) Activation of dopamine D2 receptors simultaneously ameliorates various metabolic features of obese women. Am J Physiol Endocrinol Metab 291(5):E1038–E1043. doi:10.1152/ajpendo.00567.2005

    Article  PubMed  CAS  Google Scholar 

  10. Davis LM, Pei Z, Trush MA, Cheskin LJ, Contoreggi C, McCullough K, Watkins PA, Moran TH (2006) Bromocriptine reduces steatosis in obese rodent models. J Hepatol 45(3):439–444. doi:10.1016/j.jhep.2006.03.019

    Article  PubMed  CAS  Google Scholar 

  11. Davis LM, Michaelides M, Cheskin LJ, Moran TH, Aja S, Watkins PA, Pei Z, Contoreggi C, McCullough K, Hope B, Wang GJ, Volkow ND, Thanos PK (2009) Bromocriptine administration reduces hyperphagia and adiposity and differentially affects dopamine D2 receptor and transporter binding in leptin-receptor-deficient Zucker rats and rats with diet-induced obesity. Neuroendocrinology 89(2):152–162. doi:10.1159/000170586

    Article  PubMed  CAS  Google Scholar 

  12. Pijl H, Ohashi S, Matsuda M, Miyazaki Y, Mahankali A, Kumar V, Pipek R, Iozzo P, Lancaster JL, Cincotta AH, DeFronzo RA (2000) Bromocriptine: a novel approach to the treatment of type 2 diabetes. Diabetes Care 23(8):1154–1161

    Article  PubMed  CAS  Google Scholar 

  13. Via MA, Chandra H, Araki T, Potenza MV, Skamagas M (2010) Bromocriptine approved as the first medication to target dopamine activity to improve glycemic control in patients with type 2 diabetes. Diabetes Metab Syndr Obes 3:43–48

    Article  PubMed  CAS  Google Scholar 

  14. Defronzo RA (2011) Bromocriptine: a sympatholytic, d2-dopamine agonist for the treatment of type 2 diabetes. Diabetes Care 34(4):789–794. doi:10.2337/dc11-0064

    Article  PubMed  CAS  Google Scholar 

  15. Borcherding DC, Hugo ER, Idelman G, De Silva A, Richtand NW, Loftus J, Ben-Jonathan N (2011) Dopamine receptors in human adipocytes: expression and functions. PLoS ONE 6(9):e25537. doi:10.1371/journal.pone.0025537

    Article  PubMed  CAS  Google Scholar 

  16. Pasqualini C, Weltzien FA, Vidal B, Baloche S, Rouget C, Gilles N, Servent D, Vernier P, Dufour S (2009) Two distinct dopamine D2 receptor genes in the European eel: molecular characterization, tissue-specific transcription, and regulation by sex steroids. Endocrinology 150(3):1377–1392. doi:10.1210/en.2008-0578

    Article  PubMed  CAS  Google Scholar 

  17. de Leeuw van Weenen JE, Parlevliet ET, Maechler P, Havekes LM, Romijn JA, Ouwens DM, Pijl H, Guigas B (2010) The dopamine receptor D2 agonist bromocriptine inhibits glucose-stimulated insulin secretion by direct activation of the alpha2-adrenergic receptors in beta cells. Biochem Pharmacol 79 (12):1827–1836. doi:10.1016/j.bcp.2010.01.029

  18. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  19. Guevara I, Iwanejko J, Dembinska-Kiec A, Pankiewicz J, Wanat A, Anna P, Golabek I, Bartus S, Malczewska-Malec M, Szczudlik A (1998) Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 274(2):177–188

    Article  PubMed  CAS  Google Scholar 

  20. Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132(6):2169–2180. doi:10.1053/j.gastro.2007.03.059

    Article  PubMed  CAS  Google Scholar 

  21. Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112(12):1785–1788. doi:10.1172/JCI20514

    PubMed  CAS  Google Scholar 

  22. Cirino G, Distrutti E, Wallace JL (2006) Nitric oxide and inflammation. Inflamm Allergy Drug Targets 5(2):115–119

    Article  PubMed  CAS  Google Scholar 

  23. Scislowski PW, Tozzo E, Zhang Y, Phaneuf S, Prevelige R, Cincotta AH (1999) Biochemical mechanisms responsible for the attenuation of diabetic and obese conditions in ob/ob mice treated with dopaminergic agonists. Int J Obes Relat Metab Disord 23(4):425–431

    Article  PubMed  CAS  Google Scholar 

  24. Carson MJ, Thomas EA, Danielson PE, Sutcliffe JG (1996) The 5HT5A serotonin receptor is expressed predominantly by astrocytes in which it inhibits cAMP accumulation: a mechanism for neuronal suppression of reactive astrocytes. Glia 17(4):317–326. doi:10.1002/(SICI)1098-1136(199608)17:4<317:AID-GLIA6>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  25. Agurs-Collins T, Fuemmeler BF (2011) Dopamine polymorphisms and depressive symptoms predict foods intake. Results from a nationally representative sample. Appetite 57(2):339–348. doi:10.1016/j.appet.2011.05.325

    Article  PubMed  CAS  Google Scholar 

  26. Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78(3):783–809

    PubMed  CAS  Google Scholar 

  27. Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, Najib J, Laville M, Fruchart JC, Deeb S, Vidal-Puig A, Flier J, Briggs MR, Staels B, Vidal H, Auwerx J (1997) The organization, promoter analysis, and expression of the human PPARgamma gene. J Biol Chem 272(30):18779–18789

    Article  PubMed  CAS  Google Scholar 

  28. Daval M, Foufelle F, Ferre P (2006) Functions of AMP-activated protein kinase in adipose tissue. J Physiol 574(Pt 1):55–62. doi:10.1113/jphysiol.2006.111484

    Article  PubMed  CAS  Google Scholar 

  29. Kola B, Grossman AB, Korbonits M (2008) The role of AMP-activated protein kinase in obesity. Front Horm Res 36:198–211. doi:10.1159/0000115366

    Article  PubMed  CAS  Google Scholar 

  30. Hotamisligil GS, Spiegelman BM (1994) Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43(11):1271–1278

    Article  PubMed  CAS  Google Scholar 

  31. Lee YH, Pratley RE (2005) The evolving role of inflammation in obesity and the metabolic syndrome. Curr Diabetes Rep 5(1):70–75

    Article  CAS  Google Scholar 

  32. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 389(6651):610–614. doi:10.1038/39335

    Article  PubMed  CAS  Google Scholar 

  33. Di Gregorio GB, Hensley L, Lu T, Ranganathan G, Kern PA (2004) Lipid and carbohydrate metabolism in mice with a targeted mutation in the IL-6 gene: absence of development of age-related obesity. Am J Physiol Endocrinol Metab 287(1):E182–E187. doi:10.1152/ajpendo.00189.2003

    Article  PubMed  Google Scholar 

  34. Rocha VZ, Folco EJ (2011) Inflammatory concepts of obesity. Int J Inflamm 2011:529061. doi:10.4061/2011/529061

    Google Scholar 

  35. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52(7):1799–1805

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt MI, Duncan BB, Sharrett AR, Lindberg G, Savage PJ, Offenbacher S, Azambuja MI, Tracy RP, Heiss G (1999) Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study. Lancet 353(9165):1649–1652

    Article  PubMed  CAS  Google Scholar 

  37. Liang Y, Lubkin M, Sheng H, Scislowski PW, Cincotta AH (1998) Dopamine agonist treatment ameliorates hyperglycemia, hyperlipidemia, and the elevated basal insulin release from islets of ob/ob mice. Biochim Biophys Acta 1405(1–3):1–13

    Article  PubMed  CAS  Google Scholar 

  38. Luo S, Meier AH, Cincotta AH (1998) Bromocriptine reduces obesity, glucose intolerance and extracellular monoamine metabolite levels in the ventromedial hypothalamus of Syrian hamsters. Neuroendocrinology 68(1):1–10

    Article  PubMed  CAS  Google Scholar 

  39. Goldstein M, Lew JY, Sauter A, Lieberman A (1980) The affinities of ergot compounds for dopamine agonist and dopamine antagonist receptor sites. Adv Biochem Psychopharmacol 23:75–82

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Daegu University Research Grant 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukherjee, R., Yun, J.W. Bromocriptine inhibits adipogenesis and lipogenesis by agonistic action on α2-adrenergic receptor in 3T3-L1 adipocyte cells. Mol Biol Rep 40, 3783–3792 (2013). https://doi.org/10.1007/s11033-012-2455-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2455-5

Keywords

Navigation