Skip to main content
Log in

Slow N-acetyltransferase 2 genotype contributes to anti-tuberculosis drug-induced hepatotoxicity: a meta-analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Pathogenesis and genetic factors influencing predisposition to antituberculosis drug-induced hepatotoxicity (ATDH) are not clear. Polymorphism at the genetic locus of a drug and xenobiotic compound metabolizing enzyme, N-acetyltransferase type 2 (NAT2), is reported to be associated with the excess generation of toxic reactive metabolites. To date, many case–control studies have been carried out to investigate the relationship between the NAT2 polymorphisms and ATDH, but the results have been inconsistent. To investigate this inconsistency, a meta-analysis was performed. Databases including PubMed, Web of Science, EMBASE and CNKI were searched to find relevant studies. A total of 26 case–control studies, involving 1,198 cases and 2,921 controls were included. Overall, we found significant association between slow acetylator genotype of NAT2 and ATDH (OR = 3.10, 95 % CI: 2.47–3.88, P < 10−5). Significant results were also found in East Asians, South Asians, Brazilians and Middle Eastern when stratified by ethnicity. However, no significant associations were found for Caucasians. This meta-analysis demonstrated that the slow acetylator genotype of NAT2 is a risk factor associated with increased ATDH susceptibility, but these associations vary in different ethnic populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Barnes PF, Barrows SA (1993) Tuberculosis in the 1990s. Ann Intern Med 119:400–410

    PubMed  CAS  Google Scholar 

  2. Lee WM (1995) Drug-induced hepatotoxicity. N Engl J Med 333:1118–1127

    Article  PubMed  CAS  Google Scholar 

  3. Wong WM, Wu PC, Yuen MF et al (2000) Antituberculosis drug-related liver dysfunction in chronic hepatitis B infection. Hepatology 31:201–206

    Article  PubMed  CAS  Google Scholar 

  4. Sunahara S, Urano M, Ogawa M (1961) Genetical and geographic studies on isoniazid inactivation. Science 134:1530–1531

    Article  PubMed  CAS  Google Scholar 

  5. Byrd RB, Horn BR, Solomon DA, Griggs GA (1979) Toxic effects of isoniazid in tuberculosis chemoprophylaxis. Role of biochemical monitoring in 1,000 patients. JAMA 241:1239–1241

    Article  PubMed  CAS  Google Scholar 

  6. Mitchell JR, Zimmerman HJ, Ishak KG et al (1976) Isoniazid liver injury: clinical spectrum, pathology, and probable pathogenesis. Ann Intern Med 84:181–192

    PubMed  CAS  Google Scholar 

  7. Ryan DE, Iida S, Wood AW, Thomas PE, Lieber CS, Levin W (1984) Characterization of three highly purified cytochromes P-450 from hepatic microsomes of adult male rats. J Biol Chem 259:1239–1250

    PubMed  CAS  Google Scholar 

  8. Mitchell JR, Thorgeirsson UP, Black M et al (1975) Increased incidence of isoniazid hepatitis in rapid acetylators: possible relation to hydrazine metabolites. Clin Pharmacol Ther 18:70–79

    PubMed  CAS  Google Scholar 

  9. Lauterburg BH, Smith CV, Todd EL, Mitchell JR (1985) Pharmacokinetics of the toxic hydrazino metabolites formed from isoniazid in humans. J Pharmacol Exp Ther 235:566–570

    PubMed  CAS  Google Scholar 

  10. Hein DW, Doll MA, Fretland AJ et al (2000) Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 9:29–42

    PubMed  CAS  Google Scholar 

  11. Blum M, Grant DM, McBride W, Heim H, Meyer UA (1990) Human arylamine N-acetyltransferase genes: isolation, chromosomal localization and functional expression. DNA Cell Biol 9:193–203

    Article  PubMed  CAS  Google Scholar 

  12. Stroup DF, Berlin JA, Morton SC, MOOSE group et al (2000) Meta-analysis of observational studies in epidemiology, a proposal for reporting. JAMA 283:2008–2012

    Article  PubMed  CAS  Google Scholar 

  13. An HR, Wu UQ, Wang ZY, Zhang JX, Liang Y (2012) NAT 2 and CYP2E1 polymorphisms associated with antituberculosis drug-induced hepatotoxicity in Chinese patients. Clin Exp Pharmacol Physiol 39:535–543

    Article  PubMed  CAS  Google Scholar 

  14. Huang DS, Zou YH, He G, LV JC, Wang YN (2011) Association between polymorphism of N-acetyltransferase 2 gene and development of antituberculosis drug-induced liver injury. ZhongHua Sheng Wu Yi Xue Gong Cheng Za Zhi 17:444–447 (In Chinese)

    Google Scholar 

  15. Sotsuka T, Sasaki Y, Hirai S, Yamagishi F, Ueno K (2011) Association of isoniazid-metabolizing enzyme genotypes and isoniazid-induced hepatotoxicity in tuberculosis patients. In Vivo 25:803–812

    PubMed  CAS  Google Scholar 

  16. Wu YM, Luo ZY, Zhang HM, Peng JF, Liu SY et al (2010) The association between NAT2 polymorphism and anti-tuberculosis drug-induced hepatitis. Zhonghua Gan Zang Bing Za Zhi 18:467–469 (In Chinese)

    PubMed  CAS  Google Scholar 

  17. Lee SW, Chung LS, Huang HH, Chuang TY, Liou YH et al (2010) NAT2 and CYP2E1 polymorphisms and susceptibility to first-line anti-tuberculosis drug-induced hepatitis. Int J Tuberc Lung Dis 14:622–626

    PubMed  Google Scholar 

  18. Guo M, Guo YH, Li SM, Wang D, Liu Q et al (2010) The relationship between polymorphisms of N-acetyltransferase 2 genes and anti-tuberculosis drug induced hepatic-injury. Zhonghua Chuan Ran Bing Za Zhi 28:99–102 (In Chinese)

    CAS  Google Scholar 

  19. Yamada S, Tang M, Richardson K, Halaschek-Wiener J, Chan M et al (2009) Genetic variations of NAT2 and CYP2E1 and isoniazid hepatotoxicity in a diverse population. Pharmacogenomics 10:1433–1445

    Article  PubMed  CAS  Google Scholar 

  20. Wang PY, Xi SY, Zhang GW, Hao Q (2009) Prospective nested case–control study on relation between N-acetyltransferase-2 acetylator phenotype and hepatotoxicity in China. Zhongguo Gong Gong Wei Sheng 25:300–302 (In Chinese)

    CAS  Google Scholar 

  21. Kim SH, Bahn JW, Kim YK, Chang YS, Shin ES et al (2009) Genetic polymorphisms of drug-metabolizing enzymes and anti-TB drug-induced hepatitis. Pharmacogenomics 10:1767–1779

    Article  PubMed  CAS  Google Scholar 

  22. Cho HJ, Koh WJ, Ryu YJ, Ki CS, Nam MH et al (2007) Genetic polymorphisms of NAT2 and CYP2E1 associated with antituberculosis drug-induced hepatotoxicity in Korean patients with pulmonary tuberculosis. Tuberculosis (Edinb) 87:551–556

    Article  CAS  Google Scholar 

  23. Higuchi N, Tahara N, Yanagihara K, Fukushima K, Suyama N et al (2007) NAT2 6A, a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis. World J Gastroenterol 13:6003–6008

    Article  PubMed  CAS  Google Scholar 

  24. Shimizu Y, Dobashi K, Mita Y, Endou K, Moriya S et al (2006) DNA microarray genotyping of N-acetyltransferase 2 polymorphism using carbodiimide as the linker for assessment of isoniazid hepatotoxicity. Tuberculosis (Edinb) 86:374–381

    Article  CAS  Google Scholar 

  25. Wang JH, Liu JW, Wu XQ, Wang XJ, Zhang CY et al (2004) The study on the susceptible gene of isoniazid and rifampicin-induced hepatotoxicity of pulmonary tuberculosis patients. Jun Yi Jin Xiu Xue Yuan Xue Bao 25:239–240 (In Chinese)

    CAS  Google Scholar 

  26. Huang YS, Chern HD, Su WJ, Wu JC, Chang SC et al (2003) Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology 37:924–930

    Article  PubMed  CAS  Google Scholar 

  27. Ohno M, Yamaguchi I, Yamamoto I, Fukuda T, Yokota S et al (2000) Slow N-acetyltransferase 2 genotype affects the incidence of isoniazid and rifampicin-induced hepatotoxicity. Int J Tuberc Lung Dis 4:256–261

    PubMed  CAS  Google Scholar 

  28. Yimer G, Ueda N, Habtewold A, Amogne W, Suda A et al (2011) Pharmacogenetic & pharmacokinetic biomarker for efavirenz based ARV and rifampicin based anti-TB drug induced liver injury in TB-HIV infected patients. PLoS ONE 6:e27810

    Article  PubMed  CAS  Google Scholar 

  29. Leiro-Fernandez V, Valverde D, Vazquez-Gallardo R, Botana-Rial M, Constenla L et al (2011) N-acetyltransferase 2 polymorphisms and risk of anti-tuberculosis drug-induced hepatotoxicity in Caucasians. Int J Tuberc Lung Dis 15:1403–1408

    Article  PubMed  CAS  Google Scholar 

  30. Sistanizad M, Azizi E, Khalili H, Hajiabdolbaghi M, Gholami K et al (2011) Antituberculosis drug-induced hepatotoxicity in Iranian tuberculosis patients: role of isoniazid metabolic polymorphism. Iran J Pharm Res 10:633–639

    CAS  Google Scholar 

  31. Ben Mahmoud L, Ghozzi H, Kamoun A, Hakim A, Hachicha H et al (2011) Polymorphism of the N-acetyltransferase 2 gene as a susceptibility risk factor for antituberculosis drug-induced hepatotoxicity in Tunisian patients with tuberculosis. Pathol Biol (Paris). doi:10.1016/j.patbio.2011.07.001

    Google Scholar 

  32. Bozok Cetintas V, Erer OF, Kosova B, Ozdemir I, Topcuoglu N et al (2008) Determining the relation between N-acetyltransferase-2 acetylator phenotype and antituberculosis drug induced hepatitis by molecular biologic tests. Tuberk Toraks 56:81–86

    PubMed  Google Scholar 

  33. Bose PD, Sarma MP, Medhi S, Das BC, Husain SA et al (2011) Role of polymorphic N-acetyl transferase 2 and cytochrome P4502E1 gene in antituberculosis treatment-induced hepatitis. J Gastroenterol Hepatol 26:312–318

    Article  PubMed  CAS  Google Scholar 

  34. Rana SV, Ola RP, Sharma SK, Arora SK, Sinha SK et al (2011) Comparison between acetylator phenotype and genotype polymorphism of n-acetyltransferase-2 in tuberculosis patients. Hepatol Int 6:397–402

    Article  Google Scholar 

  35. Roy B, Chowdhury A, Kundu S, Santra A, Dey B et al (2001) Increased risk of antituberculosis drug-induced hepatotoxicity in individuals with glutathione S-transferase M1 ‘null’ mutation. J Gastroenterol Hepatol 16:1033–1037

    Article  PubMed  CAS  Google Scholar 

  36. Costa GN, Magno LA, Santana CV (2012) Genetic interaction between NAT2, GSTM1, GSTT1, CYP2E1, and environmental factors is associated with adverse reactions to anti-tuberculosis drugs. Mol Diagn Ther 16:241–250

    Article  PubMed  CAS  Google Scholar 

  37. Teixeira RL, Morato RG, Cabello PH (2011) Genetic polymorphisms of NAT2, CYP2E1 and GST enzymes and the occurrence of antituberculosis drug-induced hepatitis in Brazilian TB patients. Mem Inst Oswaldo Cruz 106:716–724

    PubMed  CAS  Google Scholar 

  38. Possuelo LG, Castelan JA, de Brito TC, Ribeiro AW, Cafrune PI et al (2008) Association of slow N-acetyltransferase 2 profile and anti-TB drug-induced hepatotoxicity in patients from Southern Brazil. Eur J Clin Pharmacol 64:673–681

    Article  PubMed  CAS  Google Scholar 

  39. Rae JM, Johnson MD, Lippman ME, Flockhart DA (2001) Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 299:849–857

    PubMed  CAS  Google Scholar 

  40. Sun F, Chen Y, Xiang Y, Zhan S (2008) Drug-metabolising enzyme polymorphisms and predisposition to anti-tuberculosis drug-induced liver injury: a meta-analysis. Int J Tuberc Lung Dis 12:994–1002

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifeng Li or Wenjie Huang.

Additional information

Haijian Du and Xiaorong Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, H., Chen, X., Fang, Y. et al. Slow N-acetyltransferase 2 genotype contributes to anti-tuberculosis drug-induced hepatotoxicity: a meta-analysis. Mol Biol Rep 40, 3591–3596 (2013). https://doi.org/10.1007/s11033-012-2433-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2433-y

Keywords

Navigation