Skip to main content
Log in

Meta-analysis of the effect of KCNQ1 gene polymorphism on the risk of type 2 diabetes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The potassium voltage-gated channel, KQT-like subfamily member 1 (KCNQ1) is a member of 11 mammalian Kv channel families that plays a key role for the repolarization of the cardiac action potential as well as water and salt transport. Genome-wide association studies have identified KCNQ1 as a type 2 diabetes (T2D) susceptibility gene in populations of Asian descent. After that, a number of studies reported that the rs2237892, rs2237895, rs2237897, rs2283228, and rs231362 polymorphism in KCNQ1 has been implicated in T2D risk. However, studies on the association between these polymorphism and T2D remain conflicting. To derive a more precise estimation of the relationship, a meta-analysis of 114,140 patients and 167,322 controls from 30 published case–control studies was performed. Overall, significantly elevated T2D risk was associated with rs2237892, rs2237895, rs2237897, rs2283228, and rs231362 risk allele when all studies were pooled into the meta-analysis. In the subgroup analysis by ethnicity, sample size, and Hardy–Weinberg equilibrium status of controls, significantly increased risks were found for these polymorphisms. In conclusion, this meta-analysis suggests that rs2237892, rs2237895, rs2237897, rs2283228, and rs231362 polymorphisms in KCNQ1 are associated with elevated T2D risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

  2. O’Rahilly S, Barroso I, Wareham NJ (2005) Genetic factors in type 2 diabetes: the end of the beginning? Science 307:370–373

    Article  PubMed  Google Scholar 

  3. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A et al (2006) Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323

    Article  PubMed  CAS  Google Scholar 

  4. Nielsen EM, Hansen L, Carstensen B, Echwald SM, Drivsholm T et al (2003) The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 52:573–577

    Article  PubMed  CAS  Google Scholar 

  5. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC et al (2000) The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26:76–80

    Article  PubMed  CAS  Google Scholar 

  6. Scott LJ, Mohlke KL, Bonnycastle LL, Willer CJ, Li Y et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316:1341–1345

    Article  PubMed  CAS  Google Scholar 

  7. Yasuda K, Miyake K, Horikawa Y, Hara K, Osawa H et al (2008) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat Genet 40:1092–1097

    Article  PubMed  CAS  Google Scholar 

  8. Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

    Article  Google Scholar 

  9. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PI et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316:1331–1336

    Article  PubMed  CAS  Google Scholar 

  10. Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316:1336–1341

    Article  PubMed  CAS  Google Scholar 

  11. Barhanin J, Lesage F, Guillemare E, Fink M, Lazdunski M, Romey G (1996) K(V)LQT1 and IsK (minK) proteins associate to form the I(Ks) cardiac potassium current. Nature 384:78–80

    Article  PubMed  CAS  Google Scholar 

  12. Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM et al (1996) Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12:17–23

    Article  PubMed  Google Scholar 

  13. Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C et al (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15:186–189

    Article  PubMed  CAS  Google Scholar 

  14. Chen YH, Xu SJ, Bendahhou S, Wang XL, Wang Y et al (2003) KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science 299:251–254

    Article  PubMed  CAS  Google Scholar 

  15. Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G et al (2000) Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 106:1447–1455

    Article  PubMed  CAS  Google Scholar 

  16. Casimiro MC, Knollmann BC, Ebert SN, Vary JC Jr, Greene AE et al (2001) Targeted disruption of the Kcnq1 gene produces a mouse model of Jervell and Lange-Nielsen syndrome. Proc Natl Acad Sci USA 98:2526–2531

    Article  PubMed  CAS  Google Scholar 

  17. Demolombe S, Franco D, de Boer P, Kuperschmidt S, Roden D et al (2001) Differential expression of KvLQT1 and its regulator IsK in mouse epithelia. Am J Physiol Cell Physiol 280:C359–C372

    PubMed  CAS  Google Scholar 

  18. Ullrich S, Su J, Ranta F, Wittekindt OH, Ris F et al (2005) Effects of I(Ks) channel inhibitors in insulin-secreting INS-1 cells. Pflugers Arch 451:428–436

    Article  PubMed  CAS  Google Scholar 

  19. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  20. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    PubMed  CAS  Google Scholar 

  21. Harbord RM, Egger M, Sterne JA (2006) A modified test for small-study effects in meta-analyses of controlled trials with binary endpoints. Stat Med 25:3443–3457

    Article  PubMed  Google Scholar 

  22. Lee YH, Kang ES, Kim SH, Han SJ, Kim CH et al (2008) Association between polymorphisms in SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1 and type 2 diabetes in the Korean population. J Hum Genet 53:991–998

    Article  PubMed  CAS  Google Scholar 

  23. Unoki H, Takahashi A, Kawaguchi T, Hara K, Horikoshi M et al (2008) SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat Genet 40:1098–1102

    Article  PubMed  CAS  Google Scholar 

  24. Hu C, Wang C, Zhang R, Ma X, Wang J et al (2009) Variations in KCNQ1 are associated with type 2 diabetes and beta cell function in a Chinese population. Diabetologia 52:1322–1325

    Article  PubMed  CAS  Google Scholar 

  25. Jonsson A, Isomaa B, Tuomi T, Taneera J, Salehi A et al (2009) A variant in the KCNQ1 gene predicts future type 2 diabetes and mediates impaired insulin secretion. Diabetes 58:2409–2413

    Article  PubMed  CAS  Google Scholar 

  26. Liu Y, Zhou DZ, Zhang D, Chen Z, Zhao T et al (2009) Variants in KCNQ1 are associated with susceptibility to type 2 diabetes in the population of mainland China. Diabetologia 52:1315–1321

    Article  PubMed  CAS  Google Scholar 

  27. Qi Q, Li H, Loos RJ, Liu C, Wu Y et al (2009) Common variants in KCNQ1 are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population. Hum Mol Genet 18:3508–3515

    Article  PubMed  CAS  Google Scholar 

  28. Takeuchi F, Serizawa M, Yamamoto K, Fujisawa T, Nakashima E et al (2009) Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population. Diabetes 58:1690–1699

    Article  PubMed  CAS  Google Scholar 

  29. Chen Z, Zhang X, Ma G, Qian Q, Yao Y (2010) Association study of four variants in KCNQ1 with type 2 diabetes mellitus and premature coronary artery disease in a Chinese population. Mol Biol Rep 37:207–212

    Article  PubMed  CAS  Google Scholar 

  30. Grallert H, Herder C, Marzi C, Meisinger C, Wichmann HE et al (2010) Association of genetic variation in KCNQ1 with type 2 diabetes in the KORA surveys. Horm Metab Res 42:149–151

    Article  PubMed  CAS  Google Scholar 

  31. Han X, Luo Y, Ren Q, Zhang X, Wang F et al (2010) Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population. BMC Med Genet 11:81

    Article  PubMed  Google Scholar 

  32. Shu XO, Long J, Cai Q, Qi L, Xiang YB et al (2010) Identification of new genetic risk variants for type 2 diabetes. PLoS Genet 6

  33. Tan JT, Ng DP, Nurbaya S, Ye S, Lim XL et al (2010) Polymorphisms identified through genome-wide association studies and their associations with type 2 diabetes in Chinese, Malays, and Asian-Indians in Singapore. J Clin Endocrinol Metab 95:390–397

    Article  PubMed  CAS  Google Scholar 

  34. Tsai FJ, Yang CF, Chen CC, Chuang LM, Lu CH et al (2010) A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 6:e1000847

    Article  PubMed  Google Scholar 

  35. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C et al (2010) Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 42:579–589

    Article  PubMed  CAS  Google Scholar 

  36. Xu M, Bi Y, Xu Y, Yu B, Huang Y et al (2010) Combined effects of 19 common variations on type 2 diabetes in Chinese: results from two community-based studies. PLoS One 5:e14022

    Article  PubMed  Google Scholar 

  37. Yamauchi T, Hara K, Maeda S, Yasuda K, Takahashi A et al (2010) A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A–C2CD4B. Nat Genet 42:864–868

    Article  PubMed  CAS  Google Scholar 

  38. Zhou JB, Yang JK, Zhao L, Xin Z (2010) Variants in KCNQ1, AP3S1, MAN2A1, and ALDH7A1 and the risk of type 2 diabetes in the Chinese Northern Han population: a case–control study and meta-analysis. Med Sci Monit 16:BR179–BR183

    PubMed  CAS  Google Scholar 

  39. Been LF, Ralhan S, Wander GS, Mehra NK, Singh J et al (2011) Variants in KCNQ1 increase type II diabetes susceptibility in South Asians: a study of 3,310 subjects from India and the US. BMC Med Genet 12:18

    Article  PubMed  CAS  Google Scholar 

  40. Ohshige T, Iwata M, Omori S, Tanaka Y, Hirose H et al (2011) Association of new Loci identified in European genome-wide association studies with susceptibility to type 2 diabetes in the Japanese. PLoS One 6:e26911

    Article  PubMed  CAS  Google Scholar 

  41. Rees SD, Hydrie MZ, Shera AS, Kumar S, O’Hare JP et al (2011) Replication of 13 genome-wide association (GWA)-validated risk variants for type 2 diabetes in Pakistani populations. Diabetologia 54:1368–1374

    Article  PubMed  CAS  Google Scholar 

  42. Saif-Ali R, Ismail IS, Al-Hamodi Z, Al-Mekhlafi HM, Siang LC et al (2011) KCNQ1 haplotypes associate with type 2 diabetes in Malaysian Chinese subjects. Int J Mol Sci 12:5705–5718

    Article  PubMed  CAS  Google Scholar 

  43. Saif-Ali R, Muniandy S, Al-Hamodi Z, Lee CS, Ahmed KA et al (2011) KCNQ1 variants associate with type 2 diabetes in Malaysian Malay subjects. Ann Acad Med Singapore 40:488–492

    PubMed  Google Scholar 

  44. Tabara Y, Osawa H, Kawamoto R, Onuma H, Shimizu I et al (2011) Genotype risk score of common susceptible variants for prediction of type 2 diabetes mellitus in Japanese: the Shimanami Health Promoting Program (J-SHIPP study). Development of type 2 diabetes mellitus and genotype risk score. Metabolism 60:1634–1640

    Article  PubMed  CAS  Google Scholar 

  45. Campbell DD, Parra MV, Duque C, Gallego N, Franco L et al (2012) Amerind ancestry, socioeconomic status and the genetics of type 2 diabetes in a colombian population. PLoS One 7:e33570

    Article  PubMed  CAS  Google Scholar 

  46. Cauchi S, Ezzidi I, El Achhab Y, Mtiraoui N, Chaieb L et al (2012) European genetic variants associated with type 2 diabetes in North African Arabs. Diabetes Metab 38(4):316–323

    Article  PubMed  CAS  Google Scholar 

  47. Odgerel ZLH, Erdenebileg N, Gandbold S, Luvsanjamba M, Sambuughin N, Sonomtseren S, Sharavdorj P, Jodov E, Altaisaikhan K, Goldfarb LG (2012) Genetic variants in potassium channels are associated with type 2 diabetes in Mongolian population. J Diabetes 4:238–242

    Article  PubMed  CAS  Google Scholar 

  48. van Vliet-Ostaptchouk JV, van Haeften TW, Landman GW, Reiling E, Kleefstra N et al (2012) Common variants in the type 2 diabetes KCNQ1 gene are associated with impairments in insulin secretion during hyperglycaemic glucose clamp. PLoS One 7:e32148

    Article  PubMed  Google Scholar 

  49. Yu W, Ma RC, Hu C et al (2012) Association between KCNQ1 genetic variants and obesity in Chinese patients with type 2 diabetes. Diabetologia. doi:10.1007/s00125-012-2636-8

    Google Scholar 

  50. Gamboa-Meléndez MA, Huerta-Chagoya A, Moreno-Macías H et al (2012) Contribution of common genetic variation to the risk of type 2 diabetes in the Mexican Mestizo population. Diabetes. doi:10.2337/db11-0550

    PubMed  Google Scholar 

  51. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  52. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40:638–645

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 143 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Wang, F., Wu, Y. et al. Meta-analysis of the effect of KCNQ1 gene polymorphism on the risk of type 2 diabetes. Mol Biol Rep 40, 3557–3567 (2013). https://doi.org/10.1007/s11033-012-2429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2429-7

Keywords

Navigation