Skip to main content
Log in

Molecular cloning, sequence identification and expression analysis of novel caprine MYLPF gene

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Skeletal muscle genes are important potentially functional candidate genes for livestock production and meat quality. Myosin regulatory light chain (MLC) regulates myofilament activation via phosphorylation by Ca2+ dependent myosin light chain kinase. The cDNA of the myosin light chain, phosphorylatable, fast skeletal muscle (MYLPF) gene from the longissimus dorsi of Tianfu goat was cloned and sequenced. The results showed that MYLPF full-length coding sequence consists of 513 bp and encodes 170 amino acids with a molecular mass of 19.0 kD. Two EF-hand superfamily domain of MYLPF gene conserved between caprine and other animals. The deduced amino acid sequence of MYLPF shared significant identity with the MYLPF from other mammals. A phylogenetic tree analysis revealed that the caprine MYLPF protein has a close genetic relationship and evolutional distance with MYLPF in other mammals. Analysis by RT-PCR showed that the MYLPF mRNA was detected in heart, liver, spleen, lung, kidney, gastrocnemius, abdominal muscle and longissimus dorsi. In particular, high expression levels of MYLPF mRNA were detected in the longissimus dorsi, gastrocnemius and abdominal muscle, and low level of expressions were observed in liver, spleen, lung and kidney. In addition, the temporal expression analysis further showed MYLPF expression decreased gradually with age in the skeletal muscle. This may be important as muscle growth occurs mainly in young age in goats. Western blotting results detected the MYLPF protein in four of the tissues in which MYLPF was shown to be expressed; the four exceptions were liver, spleen, lung and kidney.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chang K, Beuzen N, Hall A (2003) Identification of microsatellites in expressed muscle genes: assessment of a desmin (CT) dinucleotide repeat as a marker for meat quality. Vet J 165(2):157–163

    Article  PubMed  CAS  Google Scholar 

  2. Eggert J, Depreux F, Schinckel A, Grant A, Gerrard D (2002) Myosin heavy chain isoforms account for variation in pork quality. Meat Sci 61(2):117–126

    Article  PubMed  CAS  Google Scholar 

  3. Davoli R, Fontanesi L, Cagnazzo M, Scotti E, Buttazzoni L, Yerle M, Russo V (2003) Identification of SNPs, mapping and analysis of allele frequencies in two candidate genes for meat production traits: the porcine myosin heavy chain 2B (MYH4) and the skeletal muscle myosin regulatory light chain 2 (HUMMLC2B). Anim Genet 34(3):221–225

    Article  PubMed  CAS  Google Scholar 

  4. Xu Y, He J, Tian HL, Chan CH, Liao J, Yan T, Lam TJ, Gong Z (1999) Fast skeletal muscle-specific expression of a zebrafish myosin light chain 2 gene and characterization of its promoter by direct injection into skeletal muscle. DNA Cell Biol 18(1):85–95

    Article  PubMed  CAS  Google Scholar 

  5. Patel JR, Diffee GM, Moss RL (1996) Myosin regulatory light chain modulates the Ca2+ dependence of the kinetics of tension development in skeletal muscle fibers. Biophys J 70(5):2333–2340

    Article  PubMed  CAS  Google Scholar 

  6. Schiaffino S, Reggiani C (1996) Molecular diversity of myofibrillar proteins: gene regulation and functional significance. Physiol Rev 76(2):371–423

    PubMed  CAS  Google Scholar 

  7. Cummins C, Anderson P (1988) Regulatory myosin light-chain genes of Caenorhabditis elegans. Mol Cell Biol 8(12):5339–5349

    PubMed  CAS  Google Scholar 

  8. Sachdev S, Raychowdhury MK, Sarkar S (2003) Human fast skeletal myosin light chain 2 cDNA: isolation, tissue specific expression of the single copy gene, comparative sequence analysis of isoforms and evolutionary relationships. Mitochondrial DNA 14(5):339–350

    CAS  Google Scholar 

  9. Blumenthal DK, Stull JT (1980) Activation of skeletal muscle myosin light chain kinase by calcium (2+) and calmodulin. Biochemistry 19(24):5608–5614

    Article  PubMed  CAS  Google Scholar 

  10. Macera M, Szabo P, Wadgaonkar R, Siddiqui M, Verma R (1992) Localization of the gene coding for ventricular myosin regulatory light chain (MYL2) to human chromosome 12q23-q24.3. Genomics 13(3):829–831

    Article  PubMed  CAS  Google Scholar 

  11. Morano I (1999) Tuning the human heart molecular motors by myosin light chains. J Mol Med 77(7):544–555

    Article  PubMed  CAS  Google Scholar 

  12. Szczesna-Cordary D (2003) Regulatory light chains of striated muscle myosin. Structure, function and malfunction. Curr Drug Targets Cardiovasc Hematol Disord 3(2):187–197

    Article  Google Scholar 

  13. Ju B, Chong SW, He J, Wang X, Xu Y, Wan H, Tong Y, Yan T, Korzh V, Gong Z (2003) Recapitulation of fast skeletal muscle development in zebrafish by transgenic expression of GFP under the MYLZ2 promoter. Dev Dyn 227(1):14–26

    Article  PubMed  CAS  Google Scholar 

  14. Xu D, Liu M, Xiong Y, Deng C, Jiang S, Li J, Zuo B, Lei M, Li F, Zheng R (2007) Identification of polymorphisms and association analysis with meat quality traits in the porcine KIAA1717 and HUMMLC2B genes. Livest Sci 106(1):96–101

    Article  Google Scholar 

  15. Lee YH, Kwon EJ, Cho ES, Park DH, Kim BW, Park HC, Park BY, Jang IS, Choi JS, Bang WY (2011) Association analysis of polymorphism in KIAA1717, HUMMLC2B, DECR1 and FTO genes with meat quality traits of the Berkshire breed. Afr J Biotechnol 10(25):5068–5074

    CAS  Google Scholar 

  16. Wang HL, Wang H, Zhu ZM, Wang CF, Zhu MJ, Mo DL, Yang SL, Li K (2006) Subcellular localization, expression patterns, SNPs and association analyses of the porcine HUMMLC2B gene. Mol Genet Genomics 276(3):264–272

    Article  PubMed  CAS  Google Scholar 

  17. Xu D, Xiong Y, Ling X, Lan J, Liu M, Deng C, Jiang S, Lei M (2005) Identification of a differential gene HUMMLC2B between F1 hybrids Landrace × Yorkshire and their female parents Yorkshire. Gene 352:118–126

    Article  PubMed  CAS  Google Scholar 

  18. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucl Acids Res 31(13):3381–3385

    Article  PubMed  CAS  Google Scholar 

  19. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723

    Article  PubMed  CAS  Google Scholar 

  20. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  21. Wang Y, Lin X, Shi C, Lu L, Qin ZY, Zhu G, Cao X, Ji C, Qiu J, Guo X (2012) α-Lipoic acid protects 3T3-L1 adipocytes from NYGGF4 (PID1) overexpression-induced insulin resistance through increasing phosphorylation of IRS-1 and Akt. J bioenerg biomembr 44:1–7

    Article  Google Scholar 

  22. Wang Y, Szczesna-Cordary D, Craig R, Diaz-Perez Z, Guzman G, Miller T, Potter JD (2007) Fast skeletal muscle regulatory light chain is required for fast and slow skeletal muscle development. FASEB J 21(9):2205–2214

    Article  PubMed  CAS  Google Scholar 

  23. Seale SM, Feng Q, Agarwal AK, El-Alfy AT (2012) Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacol Biochem Behav 101(1):77–84

    Article  PubMed  CAS  Google Scholar 

  24. Reddy ASN, Day IS, Narasimhulu SB, Safadi F, Reddy VS, Golovkin M, Harnly MJ (2002) Isolation and characterization of a novel calmodulin-binding protein from potato. J Biol Chem 277(6):4206–4214

    Article  PubMed  CAS  Google Scholar 

  25. Washabaugh CH, Ontell MP, Shan Z, Hoffman EP, Ontell M (1998) Role of the nerve in determining fetal skeletal muscle phenotype. Dev Dyn 211(2):177–190

    Article  PubMed  CAS  Google Scholar 

  26. Picard B, Lefaucheur L, Berri C, Duclos MJ (2002) Muscle fibre ontogenesis in farm animal species. Reprod Nutr Dev 42(5):415–432

    Article  PubMed  Google Scholar 

  27. Moutou KA, Canario AVM, Mamuris Z, Power DM (2001) Molecular cloning and sequence of Sparus aurata skeletal myosin light chains expressed in white muscle: developmental expression and thyroid regulation. J Exp Biol 204(17):3009–3018

    PubMed  CAS  Google Scholar 

  28. de Freitas FP (2008) The importance of fast skeletal regulatory light chain in muscle contraction

Download references

Acknowledgments

This work was financially supported by the China Agricultural Research System (CARS-39) and Selecting Projects of New Breeds in Sichuan Province (SCXYG-17-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangyi Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Xu, G., Wang, D. et al. Molecular cloning, sequence identification and expression analysis of novel caprine MYLPF gene. Mol Biol Rep 40, 2565–2572 (2013). https://doi.org/10.1007/s11033-012-2342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2342-0

Keywords

Navigation