Skip to main content

Advertisement

Log in

NF-κB controls Il2 and Csf2 expression during T cell development and activation process

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aging and dysregulation of immune responds are closely associated through a complicated but unclear mechanism. Although many theories have been proposed as overall dysregulation involved in aging, mechanisms such as efficiency of DNA repairing, over-expression of transcription factors (such as NF-κB family), and shift of cell types, are among many factors that contribute to and affect aging process. It is of great interests to understand the possible mechanism that is involved in aging immune system. Here, we report that the inducible genes Il2 and Csf2 are increased as T cells undergo activation and aging. Of particular note were the findings that the relative composition of the circulating CD4+ T cell population changes as animals mature with an increased percentage of the population being memory/effector type cells. In addition, mRNA levels of NF-κB family genes that are essential elements for cytokine activation in adult mice and activated T cells are significantly increased. We have demonstrated that the expression of inducible genes is accompanied by increased memory/effector type cells and by increased expression level of NF-κB family genes during cell activation and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PMA/I:

Phorbol 12-myristate 13-acetate and calcium ionophore

FACS:

Fluorescent-activated cell sorting

Il2 :

Interleukin-2

Csf2 :

Granulocyte-macrophage colony-stimulating factor

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

Sirt:

Sirtuin

References

  1. Desai A, Grolleau-Julius A, Yung R (2010) Leukocyte function in the aging immune system. J Leukoc Biol 87(6):1001–1009. doi:10.1189/jlb.0809542

    Article  PubMed  CAS  Google Scholar 

  2. Grolleau-Julius A, Abernathy L, Harning E, Yung RL (2009) Mechanisms of murine dendritic cell antitumor dysfunction in aging. Cancer Immunol Immunother 58(12):1935–1939. doi:10.1007/s00262-008-0636-9

    Article  PubMed  Google Scholar 

  3. Ernst DN, Hobbs MV, Torbett BE, Glasebrook AL, Rehse MA, Bottomly K, Hayakawa K, Hardy RR, Weigle WO (1990) Differences in the expression profiles of CD45RB, Pgp-1, and 3G11 membrane antigens and in the patterns of lymphokine secretion by splenic CD4+ T cells from young and aged mice. J Immunol 145(5):1295–1302

    PubMed  CAS  Google Scholar 

  4. Lerner A, Yamada T, Miller RA (1989) Pgp-hi T lymphocytes accumulate with age in mice and respond poorly to concanavalin A. Eur J Immunol 19(6):977–982

    Article  PubMed  CAS  Google Scholar 

  5. Nagelkerken L, Hertogh-Huijbregts A, Dobber R, Drager A (1991) Age-related changes in lymphokine production related to a decreased number of CD45RBhi CD4 + T cells. Eur J Immunol 21(2):273–281

    Article  PubMed  CAS  Google Scholar 

  6. Kurashima C, Utsuyama M (1997) Age-related changes of cytokine production by murine helper T cell subpopulations. Pathobiology 65(3):155–162

    Article  PubMed  CAS  Google Scholar 

  7. Utsuyama M, Hirokawa K, Kurashima C, Fukayama M, Inamatsu T, Suzuki K, Hashimoto W, Sato K (1992) Differential age-change in the numbers of CD4+ CD45RA+ and CD4+ CD29+ T-cell subsets in human peripheral-blood. Mech Ageing Dev 63(1):57–68

    Article  PubMed  CAS  Google Scholar 

  8. Cuddapah S, Barski A, Zhao K (2010) Epigenomics of T cell activation, differentiation, and memory. Curr Opin Immunol 22(3):341–347. doi:10.1016/j.coi.2010.02.007

    Google Scholar 

  9. Phyllis-Jean L, Laura H, Lisa T, Xiaohong Z, Susan S (1997) From naive to effector-alterations with aging. Immunol Rev 160(1):9–18

    Article  Google Scholar 

  10. Huang MC, Liao JJ, Bonasera S, Longo DL, Goetzl EJ (2008) Nuclear factor-kappa B-dependent reversal of aging-induced alterations in T cell cytokines. FASEB J 22(7):2142–2150. doi:10.1096/fj.07-103721

    Article  PubMed  CAS  Google Scholar 

  11. Rooney JW, Sun YL, Glimcher LH, Hoey T (1995) Novel NFAT sites that mediate activation of the interleukin-2 promoter in response to T-cell receptor stimulation. Mol Cell Biol 15(11):6299–6310

    PubMed  CAS  Google Scholar 

  12. Helenius M, Kyrylenko S, Vehvilainen P, Salminen A (2001) Characterization of aging-associated up-regulation of constitutive nuclear factor-kappa B binding activity. Antioxid Redox Signal 3(1):147–156. doi:10.1089/152308601750100669

    Article  PubMed  CAS  Google Scholar 

  13. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY, Chua KF (2009) SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136(1):62–74. doi:10.1016/j.cell.2008.10.052

    Article  PubMed  CAS  Google Scholar 

  14. Salminen A, Kaarniranta K (2009) NF-kappaB signaling in the aging process. J Clin Immunol 29(4):397–405. doi:10.1007/s10875-009-9296-6

    Article  PubMed  CAS  Google Scholar 

  15. Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392. doi:10.1126/science.1099196

    Article  PubMed  CAS  Google Scholar 

  16. Wakikawa A, Utsuyama M, Wakabayashi A, Kitagawa M, Hirokawa K (1999) Age-related alteration of cytokine production profile by T cell subsets in mice: a flow cytometric study. Exp Gerontol 34(2):231–242

    Article  PubMed  CAS  Google Scholar 

  17. Saule P, Trauet J, Dutriez V, Lekeux V, Dessaint J-P, Labalette M (2006) Accumulation of memory T cells from childhood to old age: central and effector memory cells in CD4 + versus effector memory and terminally differentiated memory cells in CD8 + compartment. Mech Ageing Dev 127(3):274–281

    Article  PubMed  CAS  Google Scholar 

  18. Sutton CE, Lalor SJ, Sweeney CM, Brereton CF, Lavelle EC, Mills KHG (2009) Interleukin-1 and IL-23 induce innate IL-17 production from T cells, amplifying Th17 responses and autoimmunity. Immunity 31(2):331–341

    Article  PubMed  CAS  Google Scholar 

  19. Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, Seals DR (2007) Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 100(11):1659–1666. doi:10.1161/01.RES.0000269183.13937.e8

    Article  PubMed  CAS  Google Scholar 

  20. Helenius M, Hanninen M, Lehtinen SK, Salminen A (1996) Aging-induced up-regulation of nuclear binding activities of oxidative stress responsive NF-kB transcription factor in mouse cardiac muscle. J Mol Cell Cardiol 28(3):487–498. doi:10.1006/jmcc.1996.0045

    Article  PubMed  CAS  Google Scholar 

  21. Ungvari Z, Orosz Z, Labinskyy N, Rivera A, Xiangmin Z, Smith K, Csiszar A (2007) Increased mitochondrial H2O2 production promotes endothelial NF-kappaB activation in aged rat arteries. Am J Physiol Heart Circ Physiol 293(1):H37–H47. doi:10.1152/ajpheart.01346.2006

    Article  PubMed  CAS  Google Scholar 

  22. Korhonen P, Helenius M, Salminen A (1997) Age-related changes in the regulation of transcription factor NF-kappa B in rat brain. Neurosci Lett 225(1):61–64

    Article  PubMed  CAS  Google Scholar 

  23. Radak Z, Chung HY, Naito H, Takahashi R, Jung KJ, Kim HJ, Goto S (2004) Age-associated increase in oxidative stress and nuclear factor kappaB activation are attenuated in rat liver by regular exercise. FASEB J 18(6):749–750. doi:10.1096/fj.03-0509fje

    PubMed  CAS  Google Scholar 

  24. Zhang J, Dai J, Lu Y, Yao Z, O’Brien CA, Murtha JM, Qi W, Hall DE, Manolagas SC, Ershler WB, Keller ET (2004) In vivo visualization of aging-associated gene transcription: evidence for free radical theory of aging. Exp Gerontol 39(2):239–247. doi:10.1016/j.exger.2003.10.024

    Article  PubMed  CAS  Google Scholar 

  25. Lafontaine-Lacasse M, Richard D, Picard F (2010) Effects of age and gender on Sirt 1 mRNA expressions in the hypothalamus of the mouse. Neurosci Lett 480(1):1–3. doi:10.1016/j.neulet.2010.01.008

    Article  PubMed  CAS  Google Scholar 

  26. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL, Scherer B, Sinclair DA (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196. doi:10.1038/nature01960

    Article  PubMed  CAS  Google Scholar 

  27. Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689. doi:10.1038/nature02789

    Article  PubMed  CAS  Google Scholar 

  28. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23(12):2369–2380. doi:10.1038/sj.emboj.7600244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by an Epigenomics Capacity Development Grant from Bioplatforms Australia (http://www.bioplatforms.com.au/). Project supported by the National Science Foundation of China (Grant No. 31172185) for Chao Sun. A scholarship from the Chinese Scholarship Council was awarded to YL. The authors declare that they have no competing financial interests. This funding does not alter our adherence to all the MBR policies on sharing data and materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Sun or Junyao Fan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Ohms, S.J., Sun, C. et al. NF-κB controls Il2 and Csf2 expression during T cell development and activation process. Mol Biol Rep 40, 1685–1692 (2013). https://doi.org/10.1007/s11033-012-2219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2219-2

Keywords

Navigation