Skip to main content
Log in

Gene expression analysis following olfactory learning in Apis mellifera

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The honeybee has a strong learning and memory ability, and is recognized as the best model organism for studying the neurobiological basis of learning and memory. In this study, we analyzed the gene expression difference following proboscis extension response-based olfactory learning in the A. mellifera using a tag-based digital gene expression (DGE) method. We obtained about 5.71 and 5.65 million clean tags from the trained group and untrained group, respectively. A total of 259 differentially expressed genes were detected between these two samples, with 30 genes up-regulated and 229 genes down-regulated in trained group compared to the untrained group. These results suggest that bees tend to actively suppress some genes instead of activating previously silent genes after olfactory learning. Our DGE data provide comprehensive gene expression information for olfactory learning, which will facilitate our understanding of the molecular mechanism of honey bee learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Fischer, Jena

    Google Scholar 

  2. Horridge GA (1996) The honeybee (Apis mellifera) detects bilateral symmetry and discriminates its axis. J Insect Physiol 42(8):755–764. doi:10.1016/0022-1910(96)00026-1

    Article  CAS  Google Scholar 

  3. Menzel R, Hammer M, Müller U, Rosenboom H (1996) Behavioral, neural and cellular components underlying olfactory learning in the honeybee. J Physiol Paris 90(5–6):395–398. doi:10.1016/S0928-4257(97)87928-4

    Article  PubMed  CAS  Google Scholar 

  4. Srinivasan MV, Zhang SW, Zhu H (1998) Honeybees link sights to smells. Nature 396:637–638. doi:10.1038/25272

    Article  CAS  Google Scholar 

  5. Collett TS, Cartwright BA (1983) Eidetic images in insects: their role in navigation. Trends Neurosci 6:101–105. doi:10.1016/0166-2236(83)90048-6

    Article  Google Scholar 

  6. Giurfa M, Zhang SW, Jenett A et al (2001) The concepts of “sameness” and “difference” in an insect. Nature 410:930–933. doi:10.1038/35073582

    Article  PubMed  CAS  Google Scholar 

  7. Zhang SW, Bartsch K, Srinivasan MV (1996) Maze learning by honeybee. Neurobiol Learn Mem 66(3):267–282. doi:10.1006/nlme.1996.0069

    Article  PubMed  CAS  Google Scholar 

  8. Zhang SW, Sebastian S, Pahl M et al (2006) Honeybee memory: a honeybee knows what to do and when. J Exp Biol 209(Pt 22):4420–4428. doi:10.1242/jeb.02522

    Article  PubMed  Google Scholar 

  9. Laska M, Galizia C, Giurfa M et al (1999) Olfactory diserimination ability and odor structure–activity relationships in honeybees. Chem Senses 24(4):429–438. doi:10.1093/chemse/24.4.429

    Article  PubMed  CAS  Google Scholar 

  10. Takeda K (1961) Classical conditioned response in the honey bee. J Inseet Physiol 6(3):168–179. doi:10.1016/0022-1910(61)90060-9

    Article  CAS  Google Scholar 

  11. Smith BH, Abramson CI, Nadel LI (1992) Insect learning: case studies in comparative psychology. In: Squire LR (ed) Encyclopedia of learning and memory. Macmillan, New York, pp 276–283

    Google Scholar 

  12. Smith BH, Cobey S (1994) The olfactory memory of the honey bee, Apis mellifera. II. Blocking between odorants in binary mixtures. J Exp Biol 195:91–108

    PubMed  CAS  Google Scholar 

  13. Gerber B, Ullrieh J (1999) No evidence for olfactory blocking in honey bee classical conditioning. J Exp Biol 202(Pt 13):1839–1854

    PubMed  Google Scholar 

  14. Fiala A, Müller U, Menzel R (1999) Reversible downregulation of protein kinase A during olfactory learning using antisense technique impairs long-term memory formation in the honeybee Apis mellifera. J Neurosci 19(22):10125–10134

    PubMed  CAS  Google Scholar 

  15. Dacher M, Gauthier M (2008) Involvement of NO-synthase and nicotinic receptors in learning in the honey bee. Physiol Behav 95(1–2):200–207. doi:10.1016/j.physbeh.2008.05.019

    Article  PubMed  CAS  Google Scholar 

  16. Wachten S, Schlenstedt J, Gauss R et al (2006) Molecular identification and functional characterization of an adenylyl cyclase from the honeybee. J Neurochem 96(6):1580–1590. doi:10.1111/j.1471-4159.2006.03666.x

    Article  PubMed  CAS  Google Scholar 

  17. Eisenhardt D, Friedrich A, Stollhoff N et al (2003) The AmCREB gene is an ortholog of the mammalian CREB/CREM family of transcription factors and encodes several splice variants in the honeybee brain. Insect Mol Biol 12(4):373–382. doi:10.1046/j.1365-2583.2003.00421.x

    Article  PubMed  CAS  Google Scholar 

  18. Kucharski R, Mitri C, Grau Y et al (2007) Characterization of a metabotropic glutamate receptor in the honeybee (Apis mellifera): implications for memory formation. Invert Neurosci 7(2):99–108. doi:10.1007/s10158-007-0045-3

    Article  PubMed  CAS  Google Scholar 

  19. Blenau W, Balfanz S, Baumann A (2000) Amtyr1: characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J Neurochem 74(3):900–908. doi:10.1046/j.1471-4159.2000.0740900.x

    Article  PubMed  CAS  Google Scholar 

  20. Eisenhardt D, Fiala A, Braun P et al (2001) Cloning of a catalytic subunit of cAMP-dependent protein kinase from the honeybee (Apis mellifera) and its localization in the brain. Insect Mol Biol 10(2):173–181. doi:10.1046/j.1365-2583.2001.00252.x

    Article  PubMed  CAS  Google Scholar 

  21. Markovets AA, Herman D (2011) Analysis of cancer metabolism with high-throughput technologies. BMC Bioinformatics 12(Suppl 10):S8. doi:10.1186/1471-2105-12-S10-S8

    Article  PubMed  Google Scholar 

  22. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515. doi:10.1038/nbt.1621

    Article  PubMed  CAS  Google Scholar 

  23. Mu Y, Ding F, Cui P et al (2010) Transcriptome and expression profiling analysis revealed changes of multiple signaling pathways involved in immunity in the large yellow croaker during Aeromonas hydrophila infection. BMC Genomics 11:506. doi:10.1186/1471-2164-11-506

    Article  PubMed  Google Scholar 

  24. Letzkus P, Ribi WA, Wood JT et al (2006) Lateralization of olfaction in the honeybee Apis mellifera. Curr Biol 16(14):1471–1476. doi:10.1016/j.cub.2006.05.060

    Article  PubMed  CAS  Google Scholar 

  25. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7(10):986–995. doi:10.1101/gr.7.10.986

    PubMed  CAS  Google Scholar 

  26. Pelosi P, Maida R (1995) Odorant-binding proteins in insects. Comp Biochem Physiol B 111(3):503–514. doi:10.1016/0305-0491(95)00019-5

    Article  PubMed  CAS  Google Scholar 

  27. Vogt RG (2005) Molecular basis of pheromone detection in insects. In: Gilbert LI, Iatro K, Gill S (eds) Comprehensive insect physiology, biochemistry, pharmacology and molecular biology, endocrinology, vol 3. Elsevier, London, pp 753–804

    Google Scholar 

  28. Farooqui T, Robinson K, Vaessin H et al (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23(12):5370–5380

    PubMed  CAS  Google Scholar 

  29. Purves RD (1976) Function of muscarinic and nicotinic acetylcholine receptors. Nature 261(5556):149–151. doi:10.1038/261149a0

    Article  PubMed  CAS  Google Scholar 

  30. Gauthier M (2010) State of the art on insect nicotinic acetylcholine receptor function in learning and memory. Adv Exp Med Biol 683:97–115. doi:10.1007/978-1-4419-6445-8_9

    Article  PubMed  CAS  Google Scholar 

  31. Hasselmo ME (2006) The role of acetylcholine in learning and memory. Curr Opin Neurobiol 16(6):710–715. doi:10.1016/j.conb.2006.09.002

    Article  PubMed  CAS  Google Scholar 

  32. Poulin B, Butcher A, McWilliams P et al (2010) The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci USA 107(20):9440–9445. doi:10.1073/pnas.0914801107

    Article  PubMed  CAS  Google Scholar 

  33. Rezayof A, Khajehpour L, Zarrindast MR (2009) The amygdala modulates morphine-induced state-dependent memory retrieval via muscarinic acetylcholine receptors. Neuroscience 160(2):255–263. doi:10.1016/j.neuroscience.2009.02.069

    Article  PubMed  CAS  Google Scholar 

  34. Sivilotti L, Nistri A (1991) GABA receptor mechanisms in the central nervous system. Prog Neurobiol 36(1):35–92. doi:10.1016/0301-0082(91)90036-Z

    Article  PubMed  CAS  Google Scholar 

  35. Kalueff A, Nutt DJ (1996/1997) Role of GABA in memory and anxiety. Depress Anxiety 4(3):100–110. doi:10.1002/(SICI)1520-6394(1996)

    Google Scholar 

  36. Cremona O, Di Paolo G, Wenk MR et al (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99(2):179–188. doi:10.1016/S0092-8674(00)81649-9

    Article  PubMed  CAS  Google Scholar 

  37. McPherson PS, Garcia EP, Slepnev VI et al (1996) A presynaptic inositol-5-phosphatase. Nature 379(6563):353–357. doi:10.1038/379353a0

    Article  PubMed  CAS  Google Scholar 

  38. Gong LW, De Camilli P (2008) Regulation of postsynaptic AMPA responses by synaptojanin 1. Proc Natl Acad Sci USA 105(45):17561–17566. doi:10.1073/pnas.0809221105

    Article  PubMed  CAS  Google Scholar 

  39. Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25(11):578–588. doi:10.1016/S0166-2236(02)02270-1

    Article  PubMed  CAS  Google Scholar 

  40. Voronov SV, Frere SG, Giovedi S et al (2008) Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proc Natl Acad Sci USA 105(27):9415–9420. doi:10.1073/pnas.0803756105

    Article  PubMed  CAS  Google Scholar 

  41. Fujita Y, Shirataki H, Sakisaka T et al (1998) Tomosyn: a syntaxin-1-binding protein that forms a novel complex in the neurotransmitter release process. Neuron 20(5):905–915. doi:10.1016/S0896-6273(00)80472-9

    Article  PubMed  CAS  Google Scholar 

  42. Chen K, Richlitzki A, Featherstone DE et al (2011) Tomosyn-dependent regulation of synaptic transmission is required for a late phase of associative odor memory. Proc Natl Acad Sci USA 108(45):18482–18487. doi:10.1073/pnas.1110184108

    Article  PubMed  CAS  Google Scholar 

  43. De Wied D, Burbach JPH (1999) Neuropeptides and behavior. In: Adelman G, Smith BH (eds) Encyclopedia of neuroscience, vol 2. Elsevier, Amsterdam, pp 1431–1436

    Google Scholar 

  44. Ogren SO, Kuteeva E, Elvander-Tottie E et al (2010) Neuropeptides in learning and memory processes with focus on galanin. Eur J Pharmacol 626(1):9–17. doi:10.1016/j.ejphar.2009.09.070

    Article  PubMed  Google Scholar 

  45. Feany MB (1996) Neuropeptide modulation of learning and memory processes. Rev Neurosci 7(2):151–164. doi:10.1515/REVNEURO.1996.7.2.151

    PubMed  CAS  Google Scholar 

  46. Shen Y, Li R (1995) The role of neuropeptides in learning and memory: possible mechanisms. Med Hypotheses 45(6):529–538. doi:10.1016/0306-9877(95)90235-X

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Shao-Wu Zhang for invaluable guidance and assistance in PER experiment and thank Dr. Zachary Huang for reviewing this manuscript. This work was supported by the Earmarked Fund for China Agriculture Research System (No.CARS-45-KXJ12) and the National Natural Science Foundation of China (No. 31060327).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Jiang Zeng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2012_2212_MOESM1_ESM.xls

Supplementary file 1 The differentially expressed genes between trained and untrained groups. TPM: transcript copies per million tags. Raw intensity: the total number of tags sequenced for each gene. FDR: false discovery rate. We used FDR ≤ 0.001 and the absolute value of log2Ratio ≥ 1 as the threshold to judge the significance of gene expression difference. In order to calculate the log2Ratio and FDR, we used TPM value of 0.01 instead of 0 for genes that do not express in one sample. (XLS 143 kb)

11033_2012_2212_MOESM2_ESM.xls

Supplementary file 2 Gene Ontology enrichment analysis of the differentially expressed genes. The results were summarized in three main categories: biological process, cellular component and molecular function. (XLS 138 kb)

Supplementary file 3 KEGG pathway enrichment analysis of the differentially expressed genes. (XLS 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZL., Wang, H., Qin, QH. et al. Gene expression analysis following olfactory learning in Apis mellifera . Mol Biol Rep 40, 1631–1639 (2013). https://doi.org/10.1007/s11033-012-2212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2212-9

Keywords

Navigation