Skip to main content
Log in

Genetic polymorphisms of NQO1, CYP1A1 and TPMT and susceptibility to acute lymphoblastic leukemia in a Tunisian population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Acute lymphoblastic leukemia (ALL) is the major pediatric cancer in developed countries. The etiology of ALL remains poorly understood, with few established environmental risk factors. These risks were influenced by co-inheritance of multiple low-risk genetic polymorphisms such as variants within cytochrome P450A1 (CYP1A1), NADPH: quinone oxidoreductase (NQO1) and Thiopurine methyltransferase (TPMT) genes. In this work, we conduct a case–control study to assess the impact of CYP1A1*2A (CYP1A1 T6235C); NQO1*2 (NQO1 C609T); TPMT*2 (TPMT G238C) and TPMT A719G polymorphisms on the risk of developing ALL. The frequencies of TPMT*2, TPMT A719G, NQO1*2 and CYP1A1*2 variants were examined in 100 patients with ALL and 106 healthy controls by allele specific PCR and/or PCR–RFLP methods using blood samples. We have found that NQO1 609CT genotype was overrepresented in patients and was associated with an aggravating effect compared to the reference group with NQO1 609CC genotype (p = 0.028, OR = 1.41; CI 95 %: 1.04–1.93). However, TPMT*2, TPMT 719*G and CYP1A1*2 variants did not appear to influence ALL susceptibility (p > 0.05). Moreover we have not found a significant correlation between the studied variants and Bcr-Abl transcript. In conclusion we retain that leukemogenesis of ALL is associated with carcinogens metabolism and consequently related to environmental exposures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Stiller CA, Parkin DM (1996) Geographic and ethnic variations in the incidence of childhood cancer. Br Med Bull 52(4):682–703

    Article  PubMed  CAS  Google Scholar 

  2. Radich JP (2001) Philadelphia chromosome-positive acute lymphocytic leukemia. Hematol Oncol Clin North Am 15:21–36

    Article  PubMed  CAS  Google Scholar 

  3. Raaschou-Nielsen O, Reynolds P (2006) Air pollution and childhood cancer: a review of the epidemiological literature. Int J Cancer 118(12):2920–2929

    Article  PubMed  CAS  Google Scholar 

  4. Belson M, Kingsley B, Holmes A (2007) Risk factors for acute leukemia in children: a review. Environ Health Perspect 115:138–145

    Article  PubMed  CAS  Google Scholar 

  5. Linabery AM, Ross JA (2008) Trends in childhood cancer incidence in the U.S. (1992–2004). Cancer 112(2):416–432

    Article  PubMed  Google Scholar 

  6. Balta G, Yuksek N, Ozyurek E et al (2003) Characterization of MTHFR, GSTM1, GSTT1, GSTP1, and CYP1A1 genotypes in childhood acute leukemia. Am J Hematol 73(3):154–160

    Article  PubMed  CAS  Google Scholar 

  7. Canalle R, Burim RV, Tone LG et al (2004) Genetic polymorphisms and susceptibility to childhood acute lymphoblastic leukemia. Environ Mol Mutagen 43(2):100–109

    Article  PubMed  CAS  Google Scholar 

  8. Lanciotti M, Dufour C, Corral L et al (2005) Genetic polymorphism of NAD(P)H:quinone oxidoreductase is associated with an increased risk of infant acute lymphoblastic leukemia without MLL gene rearrangements. Leukemia 19(2):214–216

    Article  PubMed  CAS  Google Scholar 

  9. Smith MT, Wang Y, Kane E et al (2001) Low NAD(P)H:quinone oxidoreductase 1 activity is associated with increased risk of acute leukemia in adults. Blood 97:1422–1426

    Article  PubMed  CAS  Google Scholar 

  10. Samochatova EV, Chupova NV, Rudneva A (2009) TPMT genetic variations in populations of the Russian Federation. Pediatr Blood Cancer 52(2):203–208

    Article  PubMed  Google Scholar 

  11. Ingelman-Sundberg M (2001) Genetic susceptibility to adverse effects of drugs and environmental toxicants. The role of the CYP family of enzymes. Mutat Res 482:11–19

    Article  PubMed  CAS  Google Scholar 

  12. Long DJ II, Waikel RL, Wang XJ et al (2000) NAD(P)H:quinine oxidoreductase 1 deficiency increases susceptibility to benzo(a)pyrene-induced mouse skin carcinogenesis. Cancer Res 60:5913–5915

    PubMed  CAS  Google Scholar 

  13. Long DJ II, Waikel RL, Wang XJ et al (2001) NAD(P)H:quinine oxidoreductase 1 deficiency and increased susceptibility to 7,12-dimethylbenz[a]-anthracene-induced carcinogenesis in mouse skin. J Natl Cancer Inst 93:1166–1170

    Article  PubMed  CAS  Google Scholar 

  14. De Flora S, Bennicelli C, D’Agostini F et al (1994) Cytosolic activation of aromatic and heterocyclic amines. Inhibition by dicoumarol and enhancement in viral hepatitis B. Environ Health Perspect 102(Suppl 6):69–74

    Article  PubMed  Google Scholar 

  15. Knox ChenS, Lewis AD et al (1995) Catalytic properties of NAD(P)H:quinone acceptor oxidoreductase: study involving mouse, human, and mouse-rat chimeric enzymes. Mol Pharmacol 47:934–936

    PubMed  Google Scholar 

  16. Iida A, Sekine A, Saito S et al (2001) Catalog of 320 single nucleotide polymorphisms (SNPs) in 20 quinone oxidoreductase and sulfotransferase genes. J Hum Genet 46:225–240

    Article  PubMed  CAS  Google Scholar 

  17. Hamajima N, Matsuo K, Iwata H et al (2002) NAD(P)H: quinone oxidoreductase 1 (NQO1) C609T polymorphism and the risk of eight cancers for Japanese. Int J Clin Oncol 7:103–108

    PubMed  CAS  Google Scholar 

  18. Krajinovic M, Sinnett H, Richer C et al (2002) Role of NQO1, MPO and CYP2E1 genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Int J Cancer 97(2):230–236

    Article  PubMed  CAS  Google Scholar 

  19. Gaedigk A, Tyndale RF, Jurima-Romet M et al (1998) NAD(P)H: quinone oxidoreductase: polymorphisms and allele frequencies in Caucasian, Chinese and Canadian Native Indian and Inuit populations. Pharmacogenetics 8(4):305–313

    Article  PubMed  CAS  Google Scholar 

  20. Schutz E, Gummert J, Mohr F et al (1993) Azathioprine-induced myelosuppression in thiopurine methyltransferase deficient heart transplant recipient. Lancet 341:436

    Article  PubMed  CAS  Google Scholar 

  21. Kerstens PJ, Stolk JN, de Abreu R et al (1995) Azathioprine-related bone marrow toxicity and low activities of purine enzymes in patients with rheumatoid arthritis. Arthritis Rheum 38:142–145

    Article  PubMed  CAS  Google Scholar 

  22. McLeod HL, Relling MV, Liu Q et al (1995) Polymorphic thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood 85:1897–1902

    PubMed  CAS  Google Scholar 

  23. Salavaggione OE, Wang L, Wiepert M et al (2005) Thiopurine S-methyltransferase pharmacogenetics: variant allele functional and comparative genomics. Pharmacogenet Genomics 15:801–815

    Article  PubMed  CAS  Google Scholar 

  24. Schaeffeler E, Zanger UM, Eichelbaum M et al (2008) Highly multiplexed genotyping of thiopurine s-methyltransferase variants using MALD-TOF mass spectrometry: reliable genotyping in different ethnic groups. Clin Chem 54:1637–1647

    Article  PubMed  CAS  Google Scholar 

  25. McLeod HL, Krynetski EY, Relling MV et al (2000) Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia. Leukemia 14:567–572

    Article  PubMed  CAS  Google Scholar 

  26. Otterness D, Szumlanski C, Lennard L et al (1997) Human thiopurine methyltransferase pharmacogenetics: gene sequence polymorphisms. Clin Pharmacol Ther 62:60–73

    Article  PubMed  CAS  Google Scholar 

  27. Hon YY, Fessing MY, Pui CH et al (1999) Polymorphism of the thiopurine S-methyltransferase gene in African-Americans. Hum Mol Genet 8:371–376

    Article  PubMed  CAS  Google Scholar 

  28. Collie-Duguid ESR, Pritchard SC, Powrie RH et al (1999) The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 9:37–42

    Article  PubMed  CAS  Google Scholar 

  29. Menif S, Zarrouki S, Jeddi R et al (2009) Quantitative detection of bcr-abl transcripts in chronic myeloid leukemia. Pathol Biol 57(5):388–391

    Article  PubMed  CAS  Google Scholar 

  30. Kelsey KT, Ross D, Traver RD et al (1997) Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. Br J Cancer 76(7):852–854

    Article  PubMed  CAS  Google Scholar 

  31. Reddy P, Naidoo RN, Robins TG et al (2010) GSTM1, GSTP1, and NQO1 polymorphisms and susceptibility to atopy and airway hyperresponsiveness among South African schoolchildren. Lung 188(5):409–414

    Article  PubMed  Google Scholar 

  32. Guha N, Chang JS, Chokkalingam AP et al (2008) NQO1 polymorphisms and de novo childhood leukemia: a HuGE review and meta-analysis. Am J Epidemiol 168(11):1221–1320

    Article  PubMed  Google Scholar 

  33. Ross D, Kepa JK, Winski SL et al (2000) NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem Biol Interact 129(1–2):77–97

    Article  PubMed  CAS  Google Scholar 

  34. Vijayakrishnan J, Houlston RS (2010) Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica 95(8):1405–1414

    Article  PubMed  CAS  Google Scholar 

  35. Ernester L (1998) DT-diaphorase: its structure, function, regulation, and role in antioxidant defence and cancer chemotherapy. In: Yagi K (ed) Pathophysiology of lipid peroxides and related free radicals. S Karger, Basel, pp 149–168

    Google Scholar 

  36. Ross D (1997) Quinone reductases. In: Guengerich FP (ed) Comprehensive toxicology, vol 3. Pergamon Press, New York, pp 179–197

    Google Scholar 

  37. Asher G, Lotem J, Kama R et al (2002) NQO1 stabilizes p53 through a distinct pathway. Proc Natl Acad Sci USA 99:3099–3104

    Article  PubMed  CAS  Google Scholar 

  38. Anwar A, Dehn D, Siegel D et al (2003) Interaction of human NAD(P)H:quinone oxidoreductase 1 (NQO1) with the tumor suppressor protein p53 in cells and cell-free systems. J Biol Chem 278:10368–10373

    Article  PubMed  CAS  Google Scholar 

  39. Rimando MG, Chua MN, Yuson ED et al (2008) Prevalence of GSTT1, GSTM1 and NQO1 (609C>T) in Filipino children with ALL (acute lymphoblastic leukaemia). Biosci Rep 28(3):117–124

    Article  PubMed  CAS  Google Scholar 

  40. Kracht T, Schrappe M, Strehl S et al (2004) NQO1 C609T polymorphism in distinct entities of pediatric hematologic neoplasms. Haematologica 89(12):1492–1497

    PubMed  CAS  Google Scholar 

  41. Wiemels JL, Pagnamenta A, Taylor GM et al (1999) A lack of a functional NAD(P)H: quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res 59:4095–4099

    PubMed  CAS  Google Scholar 

  42. Liu QX, Chen HC, Liu XF et al (2005) Study on the relationship between polymorphisms of CYP1A1, GSTM1, GSTT1 genes and the susceptibility to acute leukemia in the general population of Hunan province. Zhonghua Liu Xing Bing Xue Za Zh 26(12):975–979

    Google Scholar 

  43. Krajinovic M, Labuda D, Richer C et al (1999) Susceptibility to childhood acute lymphoblastic leukemia: influence of CYP1A1, CYP2D6, GSTM1, and GSTT1 genetic polymorphisms. Blood 93(5):1496–1501

    PubMed  CAS  Google Scholar 

  44. Clavel J, Bellec S, Rebouissou S et al (2005) Childhood leukaemia, polymorphisms of metabolism enzyme genes, and interactions with maternal tobacco, coffee and alcohol consumption during pregnancy. Eur J Cancer Prev 14(6):531–540

    Article  PubMed  Google Scholar 

  45. Ameyaw MM, Collie-Duguid ES, Powrie RH et al (1999) Thiopurine methyltransferase alleles in British and Ghanaian populations. Hum Mol Genet 8(2):367–370

    Article  PubMed  CAS  Google Scholar 

  46. Spire-Vayron de la Moureyre C, Debuysere H, Mastain B et al (1998) Genotypic and phenotypic analysis of the polymorphic thiopurine S-methyltransferase gene (TPMT) in a European population. Br J Pharmacol 125:879–887

    Article  PubMed  CAS  Google Scholar 

  47. Yates CR, Krynetski EY, Fessing MY et al (1997) Molecular diagnosis of thiopurine S-methyltransferase deficiency: genetic basis for azathioprine and mercaptopurine intolerance. Ann Intern Med 126:608–614

    PubMed  CAS  Google Scholar 

  48. Relling MV, Hancock ML, Rivera GK et al (1999) Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 91:2001–2008

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

None.

Conflict of interest

All authors would like to declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slah Ouerhani.

Additional information

Nouha Cherif and Ikbel Bahri contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouerhani, S., Cherif, N., Bahri, I. et al. Genetic polymorphisms of NQO1, CYP1A1 and TPMT and susceptibility to acute lymphoblastic leukemia in a Tunisian population. Mol Biol Rep 40, 1307–1314 (2013). https://doi.org/10.1007/s11033-012-2174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2174-y

Keywords

Navigation