Skip to main content
Log in

Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Withania somnifera is a rich reservoir of pharmaceutically active steroidal lactones known as withanolides. The plant is well characterized in terms of its chemistry and pharmacology, but very little is known about the pathway involved in the biosynthesis of withanolides. The present investigation describes the cloning, characterization and expression of squalene epoxidase (SE) gene from W. somnifera. SE (SQE; EC. 1.14.99.7) is one of the rate limiting enzymes in the biosynthesis of triterpenoids, catalyzing the stereospecific epoxidation of squalene to 2,3-oxidosqualene. A full length SE gene (WsSQE) of 1,956 bp was cloned which contained an open reading frame of 1,596 bp, encoding a protein of 531 amino acids with a predicted molecular mass of 57.67 kDa and theoretical PI of 8.48. Full length WsSQE was cloned into pGEX4T-2 vector and expressed in E.coli. Phylogenetic analysis indicated a significant evolutionary relatedness of WsSQE with squalene epoxidases of other plant species and the degree of relatedness with deduced amino acid sequences showed a significant correlation with different plant species. Using genome walking approach, a promoter sequence of 513 bp of WsSQE was isolated which revealed several key cis-regulatory elements known to be involved in various biotic and abiotic plant stresses. Comparative expression analysis of tissue specific WsSQE done by quantitative-PCR demonstrated the highest transcript levels in leaves, as compared to stalk and root tissues. This is the first report of cloning and bacterial expression of SE from W. somnifera and may be of significant interest to understand the regulatory role of SE in the biosynthesis of withanolides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kaileh M, Vanden Berghe W, Heyerick A, Horion J, Piette J, Libert C, De Keukeleire D, Essawi T, Haegeman G (2007) Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282(7):4253–4264. doi:10.1074/jbc.M606728200

    Article  PubMed  CAS  Google Scholar 

  2. Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazon J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14(7):2373–2393. doi:10.3390/molecules14072373

    Article  PubMed  CAS  Google Scholar 

  3. Archana R, Namasivayam A (1999) Antistressor effect of Withania somnifera. J Ethnopharmacol 64(1):91–93

    Article  PubMed  CAS  Google Scholar 

  4. Davis L, Kuttan G (1998) Suppressive effect of cyclophosphamide-induced toxicity by Withania somnifera extract in mice. J Ethnopharmacol 62(3):209–214

    Article  PubMed  CAS  Google Scholar 

  5. Davis L, Kuttan G (2002) Effect of Withania somnifera on CTL activity. J Exp Clin Cancer Res 21(1):115–118

    PubMed  CAS  Google Scholar 

  6. Ziauddin M, Phansalkar N, Patki P, Diwanay S, Patwardhan B (1996) Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol 50(2):69–76

    Article  PubMed  CAS  Google Scholar 

  7. Andallu B, Radhika B (2000) Hypoglycemic, diuretic and hypocholesterolemic effect of winter cherry (Withania somnifera, Dunal) root. Indian J Exp Biol 38(6):607

    PubMed  CAS  Google Scholar 

  8. Anbalagan K, Sadique J (1981) Influence of an Indian medicine (Ashwagandha) on acute-phase reactants in inflammation. Indian J Exp Biol 19(3):245–249

    PubMed  CAS  Google Scholar 

  9. Dhar RS, Verma V, Suri KA, Sangwan RS, Satti NK, Kumar A, Tuli R, Qazi GN (2006) Phytochemical and genetic analysis in selected chemotypes of Withania somnifera. Phytochemistry 67(20):2269–2276. doi:10.1016/j.phytochem.2006.07.014

    Article  PubMed  CAS  Google Scholar 

  10. Lattoo SK, Dhar RS, Khan S, Bamotra S, Dhar AK (2007) Temporal sexual maturation and incremental staminal movement encourages mixed mating in Withania somnifera-: an insurance for reproductive success. Curr Sci 92(10):1390–1399

    Google Scholar 

  11. Sharma RK, Samant SS, Sharma P, Devi S (2012) Evaluation of antioxidant activities of Withania somnifera leaves growing in natural habitats of North-west Himalaya, India. J Med Plants Res 6(5):5. doi:10.5897/JMPR11.257

    Google Scholar 

  12. Fong MY, Jin S, Rane M, Singh RK, Gupta R, Kakar SS (2012) Withaferin A synergizes the therapeutic effect of doxorubicin through ROS-mediated autophagy in ovarian cancer. PLoS ONE 7(7):e42265. doi:10.1371/journal.pone.0042265

    Article  PubMed  CAS  Google Scholar 

  13. Samadi A, Cohen S, Mukerji R, Chaguturu V, Zhang X, Timmermann B, Cohen M, Person E (2012) Natural withanolide withaferin A induces apoptosis in uveal melanoma cells by suppression of Akt and c-MET activation. Tumor Biol 33(4):1179–1189. doi:10.1007/s13277-012-0363-x

    Article  CAS  Google Scholar 

  14. Mondal S, Roy S, Maity R, Mallick A, Sangwan R, Misra-Bhattacharya S, Mandal C (2012) Withanolide D, carrying the baton of Indian rasayana herb as a lead candidate of antileukemic agent in modern medicine biochemical roles of eukaryotic cell surface macromolecules. In: Sudhakaran PR, Surolia A (eds) Advances in experimental medicine and biology, vol 749. Springer, New York, pp 295–312. doi:10.1007/978-1-4614-3381-1_20

    Google Scholar 

  15. Bhat WW, Lattoo SK, Razdan S, Dhar N, Rana S, Dhar RS, Khan S, Vishwakarma RA (2012) Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.). Dunal Gene 499(1):25–36. doi:10.1016/j.gene.2012.03.004

    Article  CAS  Google Scholar 

  16. Abe I, Abe T, Lou W, Masuoka T, Noguchi H (2007) Site-directed mutagenesis of conserved aromatic residues in rat squalene epoxidase. Biochem Biophys Res Commun 352(1):259–263. doi:10.1016/j.bbrc.2006.11.014

    Article  PubMed  CAS  Google Scholar 

  17. Han JY, In JG, Kwon YS, Choi YE (2010) Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry 71(1):36–46. doi:10.1016/j.phytochem.2009.09.031

    Article  PubMed  CAS  Google Scholar 

  18. Leber R, Landl K, Zinser E, Ahorn H, Spok A, Kohlwein SD, Turnowsky F, Daum G (1998) Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles. Mol Biol Cell 9(2):375–386

    PubMed  CAS  Google Scholar 

  19. Bai M, Prestwich GD (1992) Inhibition and activation of porcine squalene epoxidase. Arch Biochem Biophys 293(2):305–313

    Article  PubMed  CAS  Google Scholar 

  20. Uchida H, Sugiyama R, Nakayachi O, Takemura M, Ohyama K (2007) Expression of the gene for sterol-biosynthesis enzyme squalene epoxidase in parenchyma cells of the oil plant Euphorbia tirucalli. Planta 226(5):1109–1115. doi:10.1007/s00425-007-0557-4

    Article  PubMed  CAS  Google Scholar 

  21. He F, Zhu Y, He M, Zhang Y (2008) Molecular cloning and characterization of the gene encoding squalene epoxidase in Panax notoginseng. DNA Seq 19(3):270–273. doi:10.1080/10425170701575026

    PubMed  CAS  Google Scholar 

  22. Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45(8):976–984. doi:10.1093/pcp/pch126

    Article  PubMed  CAS  Google Scholar 

  23. Ryder NS (1992) Terbinafine: mode of action and properties of the squalene epoxidase inhibition. Br J Dermatol 126(Suppl 39):2–7

    Article  PubMed  Google Scholar 

  24. Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788

    Article  PubMed  CAS  Google Scholar 

  25. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684

    PubMed  CAS  Google Scholar 

  26. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  27. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5(4):725–738. doi:10.1038/nprot.2010.5

    Article  PubMed  CAS  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  29. Pearson A, Budin M, Brocks JJ (2003) Phylogenetic and biochemical evidence for sterol synthesis in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 100(26):15352–15357. doi:10.1073/pnas.2536559100

    Article  PubMed  CAS  Google Scholar 

  30. Mushegian AR, Koonin EV (1995) A putative FAD-binding domain in a distinct group of oxidases including a protein involved in plant development. Protein Sci 4(6):1243–1244. doi:10.1002/pro.5560040623

    Article  PubMed  CAS  Google Scholar 

  31. Sangwan RS, Das Chaurasiya N, Lal P, Misra L, Tuli R, Sangwan NS (2008) Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera). Physiol Plant 133(2):278–287. doi:10.1111/j.1399-3054.2008.01076.x

    Article  PubMed  CAS  Google Scholar 

  32. Yanagisawa S (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21(3):281–288

    Article  PubMed  CAS  Google Scholar 

  33. Takemura T, Chow YL, Todokoro T, Okamoto T, Sato F (2010) Over-expression of rate-limiting enzymes to improve alkaloid productivity. Methods Mol Biol 643:95–109. doi:10.1007/978-1-60761-723-5_7

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial grant from Council of Scientific and Industrial Research, Government of India, New Delhi under Network Project NWP 0008. IIIM/1491/2012 is the publication contribution number of Indian Institute of Integrative Medicine, Jammu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekha S. Dhar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razdan, S., Bhat, W.W., Rana, S. et al. Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal. Mol Biol Rep 40, 905–916 (2013). https://doi.org/10.1007/s11033-012-2131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2131-9

Keywords

Navigation