Skip to main content
Log in

Diversity and selection of MHC class IIb gene exon3 in Chinese alligator

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Our study used MHC class IIb gene exon3 complete sequence as markers to investigate genetic variability, selection and population differentiation in Chinese alligator. In this study, 282 bp MHC IIb exon3 complete sequence was got, none of the sequences contained insertions/deletions or stop codons, suggesting that all sequences might come from functional molecules in the genome. The neighbor-joining (NJ) tree revealed that Xuangzhou and Changxing populations were genetically close related, while Wild population showed the most diverse from the other. Gene flow (Nm) was very higher than one, suggesting that inter-group gene flow may have occurred. Furthermore, the results showed that MHC IIb gene might be a good molecular marker, we think that this technology could be used for Chinese alligator breeding and releasing in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thorbjarnarson J, Wang XM, Ming S (2002) Wild populations of the Chinese alligator approach extinction. Biol Conserv 103:93–102

    Article  Google Scholar 

  2. Wu XB, Gu CM, Zhu JC (2008) Comprehensive study of Anhui Chinese alligator national nature reserve. HeFei University of Technology Press, Anhui

    Google Scholar 

  3. Wu XB, Wang YQ, Zhou KY, Zhu WQ, Tong ZZ, Nie JS, Wang CL, Xie WS (2002) Genetic variation in captive population of Chinese alligator, Alligator sinensis, revealed by random amplified polymorphic DNA (RAPD). Biol Conserv 106:435–441

    Article  Google Scholar 

  4. Wang YQ, Zhu WQ, Huang L, Zhou KY, Wang RP (2006) Genetic diversity of Chinese alligator (Alligator sinensis) revealed by AFLP analysis: an implication on the management of captive conservation. Biodivers Conserv 15:2945–2955

    Article  Google Scholar 

  5. Wang YQ, Zhu WQ, Wang CL (2003) D-loop sequence variation of mitochondrial DNA in captive Chinese alligator. Acta Genet Sinica 30:425–430

    CAS  Google Scholar 

  6. Wu XB, Liu H, Xue H, Amato G, Thorbjarnarson J (2007) Low genetic variation with Mitochondrial DNA control region sequence in Chinese Alligator (Alligator sinensis) and implification for its conservation. J Anhui Normal Univ (Nat Sci) 30(3):349–353

    CAS  Google Scholar 

  7. Huang L, Wang YQ (2004) SSR polymorphism of Alligator sinensis and conservation strategy of genetic diversity. Acta Genet Sinica 31(2):143–150

    CAS  Google Scholar 

  8. Jing W, Wang XL, Lan H, Fang SG (2009) Eleven novel microsatellite markers for the Chinese alligator (Alligator sinensis). Conserv Genet 10:543–546

    Article  CAS  Google Scholar 

  9. Xu QH, Fang SG, Wang ZP, Wang ZW (2005) Microsatellite analysis of genetic diversity in the Chinese alligator (Alligator sinensis) Changxing captive population. Conserv Genet 6:941–951

    Article  CAS  Google Scholar 

  10. Zhu HT, Wu XB, Xue H, Wei L, Hu YL (2009) Isolation of polymorphic microsatellite loci from the Chinese alligator, Alligator sinensis. Mol Ecol Res 9(3):892–894

    Article  CAS  Google Scholar 

  11. Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci USA 101:3490–3494

    Article  PubMed  CAS  Google Scholar 

  12. Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17:551–557

    Article  Google Scholar 

  13. Sommer S (2005) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16–34

    Article  PubMed  Google Scholar 

  14. van Tienderen PH, de Haan AA, van der Linden CG, Vosman B (2002) Biodiversity assessment using markers for ecologically important traits. Trends Ecol Evol 17:577–582

    Article  Google Scholar 

  15. Alcaide M, Edwards S, Negro JJ, Serrano D, Tella J (2008) Extensive polymorphism and geographical variation at a positively selected MHC class II B gene of the lesser kestrel (Falco naumanni). Mol Ecol 17:2652–2665

    Article  PubMed  CAS  Google Scholar 

  16. Cutrera AP, Lacey EA (2007) Trans-species polymorphism and evidence of selection on class II MHC loci in tuco-tucos (rodentia: ctenomyidae). Immunogenetics 59:937–948

    Article  PubMed  CAS  Google Scholar 

  17. Koskinen MT, Haugen TO, Primmer CR (2002) Contemporary fisherian life-history evolution in small salmonid populations. Nature 419:826–830

    Article  PubMed  CAS  Google Scholar 

  18. Klein J, Gutknecht J, Fischer N (1990) The major histocompatibility complex and human evolution. Trends Genet 6(1):7–11

    Article  PubMed  CAS  Google Scholar 

  19. Karaiskou N, Moran P, Georgitsakis G, Abatzopoulos TJ, Triantafyllidis A (2010) High allelic variation of MHC class II alpha antigen and the role of selection in wild and cultured Sparus aurata populations. Hydrobiologia 638:11–20

    Article  Google Scholar 

  20. Shi Y, Wu XB, Yan P, Chen BH (2004) Cloning and sequences analysis of the second exon of MHC class IIB genes in Chinese alligator (Alligator sinensis). Zool Res 25(5):415–421

    CAS  Google Scholar 

  21. Liu H, Wu XB, Yan P, Jiang ZG (2007) Polymorphism of exon 3 of MHC class IIB gene in Chinese alligator (Alligator sinensis). J Genet Genomics 34(10):918–929

    Article  PubMed  CAS  Google Scholar 

  22. Axtner J, Sommer S (2007) Gene duplication, allelic diversity, selection processes and adaptive value of MHC class II DRB genes of the bank vole, clethrionomys glareolus. Immunogenetics 59:417–426

    Article  PubMed  CAS  Google Scholar 

  23. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, vol 2 edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  24. Kamel A, Abd-Elsalam (2003) Bioinformatic tools and guideline for PCR primer design. Afr J Biotechnol 2(5):91–95

    Google Scholar 

  25. Lu GQ (2004) Software review Vector NTI, a balanced all-in-one sequence analysis suite. Brief Bioinform 5(4):378–388

    Article  PubMed  CAS  Google Scholar 

  26. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  PubMed  CAS  Google Scholar 

  27. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins GD (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  28. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  PubMed  CAS  Google Scholar 

  29. Exeoffier L, Laval G, Sehneider S (2005) Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    Google Scholar 

  30. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis, MEGA. software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  31. Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. Oxford University Press, New York

    Google Scholar 

  32. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  PubMed  CAS  Google Scholar 

  33. Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogen Evol 26:1–7

    Article  CAS  Google Scholar 

  34. Miller HC, Lambert DM (2004) Genetic drift outweighs balancing selection in shaping post-bottleneck major histocompatibility complex variation in New Zealand robins (Petroicidae). Mol Ecol 13:3709–3721

    Article  PubMed  CAS  Google Scholar 

  35. López-Fanjul C, Almudena F (2007) Miguel A. The effect of dominance on the use of the QST-FST contrast to detect natural selection on quantitative traits. Genetics 176(1):725–727

    Article  PubMed  Google Scholar 

  36. Slatkin M (1985) Gene flow in natural populations. Ann Rev Ecol Syst 16:393–430

    Article  Google Scholar 

  37. Yang G, Yan J, Zhou K, Wei F (2005) Sequence variation and gene duplication at MHC DQB loci of baiji (Lipotes vexillifer), a Chinese river dolphin. J Hered 96:310–317

    Article  PubMed  CAS  Google Scholar 

  38. Hughes AL, Nei M (1989) Nucleotide substitution at major histocompatibility complex class II loci evidence for overdominant selection. Proc Natl Acad Sci 86:958–962

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, No. 30770312), the Excellent Creative Research Team of Animal Biology in Anhui Normal University, the Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province and Zoology Practical Skills Training Center in Fuyang Teachers College. We are grateful to the assistance of Anhui Research Center for Chinese Alligator Reproduction in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, C., Zhao, J., Li, Y. et al. Diversity and selection of MHC class IIb gene exon3 in Chinese alligator. Mol Biol Rep 40, 295–301 (2013). https://doi.org/10.1007/s11033-012-2061-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2061-6

Keywords

Navigation