Skip to main content
Log in

Evaluation of synthetic hexaploid wheats (derivative of durum wheats and Aegilops tauschii accessions) for studying genetic diversity using randomly amplified polymorphic DNA (RAPD) markers

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Synthetic hexaploid (SH) wheat derived from crossing tetraploid durum wheat and diploid Aegilops tauschii provide germplasm for wheat improvement as the conventional wheat varieties possess very low genetic diversity. This study aims to identify diverse SH lines which can be used in breeding programs for transferring the desired traits into bread wheat. The study was conducted on 24 SH lines using 10 pairs of randomly amplified polymorphic DNA (RAPD) markers. Application of RAPDs showed the presence of some diagnostic bands in SH wheats that were absent in durum parents suggest that these bands are donated by D genome of the wild relative Ae. tauschii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kerber ER, Dyck EL (1979) Resistance to stem and leaf rust of wheat. in: Ae. squarrosa and transfer of a gene for stem rust resistance to hexaplois wheat, Proc 5th Intern Wheat Genet Symp, New Delhi, pp 358–364

  2. Gill BS, Gnocchi M, Perenzin, and Heun M (1986) Chromosome banding methods standard chromosome band nomenclature and applications in cytogenetic analysis. In: Heyne, EG (ed.) Wheat and wheat Improvement, 2nd edn Agronomy Monograph No 13 American Society of Agronomy, Madison, WI, pp 243–254

  3. Mujeeb-Kazi A (2003) International maize and wheat improvement centre (CIMMYT) Int, Apartado Postal 6-641, 06600 Mexico, DF, Mexico

  4. Whelan EDP, Thomas JB (1989) Chromosomal location in common wheat of a gene (Cmc1) from Aegilops squarrosa that conditions resistance to colonization by the wheat curl mite. Genome 32(6):1033–1036

    Article  Google Scholar 

  5. Wilson AS, Rogstadt SH, Schaal BA (1991) On wheat and rye hybrids. Trans. Proc. Bot. Soc, Edinburgh 12: 286–288

    Google Scholar 

  6. Villareal RL, Singh RP, Mujeeb-Kazi A (1992) Expression of resistance to Puccinia recondita f. sp.tritici in synthetic hexaploid.Vortr Pflanzenzuechtg. 24: 253–255

    Google Scholar 

  7. Gill BS, Raupp WJ (1987) Direct gene transfers from Aegilops squarrosa L. to hexaploid wheat. Crop Sci 27:445–450

    Article  Google Scholar 

  8. Cox TS, Raupp WJ, Wilson DL, Gill BS, Leath S, Bockus WW, Browder LE (1992) Resistance to foliar diseases in the collection of Triticum tauschii germplasm. Plant Dis 76:1061–1064

    Article  Google Scholar 

  9. Ma H, Hughes GR (1995) Genetic control and chromosomal location of Triticum timopheevi derived resistance to Septoria nodorum blotch in durum wheat. Genome 38:332–338

    Article  PubMed  CAS  Google Scholar 

  10. Villareal RL, Mujeeb-kazi A, Fuentes-Davila G, Rajaram S, Toro ED (1994) Resistance to Karnal bunt in synthetic hexaploid wheats derived from Triticum turgidum x T. tauschii. Plant Breed. 112:63–69

    Article  Google Scholar 

  11. Mujeeb-Kazi A, Gilchrist LI, Fuentes-Davila G, and Delgado R (1998) Production and utilization of D genome synthetic hexaploids in wheat improvement. In: Jaradat AA, ed. Proc. 3rd Int Triticeae Symp, ICARDA, Science Publishers, Aleppo, pp 369–374

  12. May CE, Lagudah ES (1992) Inheritance in hexaploid wheat of septoria tritici blotch resistance and other characteristics derived from triticum tauschii Aus. J Agric Res 43:433–442

    Article  Google Scholar 

  13. Mujeeb-Kazi A, Cano S, Rosas V, Cortes A, Delgado R (2001) Registration of five synthetic hexaploid wheat and seven bread wheat lines resistant to wheat spot blotch. Crop Sci 12:121–123

    Google Scholar 

  14. Lage J, Skovmand B, Anderon SB (2003) Expression & suppression of resistance to green bug in synthetic hexaploid wheats derived from Triticum dicoccum x Aegilops tauschii crosses. J Econ Entomol 96:202–206

    Article  PubMed  CAS  Google Scholar 

  15. Mujeeb-Kazi A, Roldan S, Suh DY, Ter-Kuile N, Farooq S (1989) Production and cytogenetics of Triticum aestivum L. hybrids with some rhizomatous species. Theor Appl Genet 77:162–168

    Article  Google Scholar 

  16. Joshi CP, Nguyen HT (1993) Application of the random amplified polymorphic DNA technique for detection of polymorphism among wild and cultivated tetraploid wheats. Genome 36:602–609

    Article  PubMed  CAS  Google Scholar 

  17. Devos KM, Gale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet 84:567–572

    Article  Google Scholar 

  18. Muhammad I, Ahmad H, Ghafoor S, Afridi SG, Begum K, Khan IA (2010) Identification of RAPD primers specific for wheat homoeologous group 1 and 3 chromosomes. Asian J Agric Sci 2(3):117–119

    Google Scholar 

  19. Myburg AA, Botha AM, Wingfield BD, Wilding WJM (1997) Identification and genetic distance analysis of wheat cultivars using RAPD fingerprinting. Cer Res Comm 25:875–882

    CAS  Google Scholar 

  20. Liu H, Efremova T, Roder M, Borner (1999) Diversity based on RAPD markers in wheat, Triticum aestivum L. Plant Breed 118:119–123

    Article  Google Scholar 

  21. Sivolap YM, Chebotar SV, Topchieva EA, Korzun VN, Totskiy VN (1999) RAPD and SSRP analyses of molecular-genetic polymorphism in Triticum aestivum L. cultivars. Russian J Genet 35:1433–1440

    CAS  Google Scholar 

  22. Procunier KW, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007

    Google Scholar 

  23. Wang RRC, Liu ZW, Carman JG (1993) The introduction and expression of Apomixis in hybrids of wheat and Elymus rectisetus. In: Li ZS, Xin ZY (eds) Proceedings of 8th international wheat genetics symposium, 20–25 July 1993, China AgriScientech, Beijing, China, pp 317–319

  24. Riede VG, Coucoli H, Chapman V (1994) The inheritance in wheat of crossability with rye. Genet Res 9:259–267

    Google Scholar 

  25. Waines G, Skovmand B (1996) Unpublished report to the Wheat Crop Germplasm Committee. Manhattan, KS

    Google Scholar 

  26. Ovilo C, Barragán MC, Castellanos C, Rodríguez MC, Silió L, Toro MA (1998) Application of molecular markers (RAPD, AFLP and Microsatellites) to Iberian pig genotype characterization. Departamento de Mejora Genética y Biotecnología, INIA, Ctra. Coruña km 7, 28040 Madrid

  27. Barriga DP, Payne HJ, Morgounov TS, van Ginkel M, Rajaram S (1994) The challenge: one billion tons of wheat by 2020. In: Slinkard AE (ed) Proc 9th Int Wheat Genetics Sym, 2-7 Aug., vol. 1. Saskatoon, Saskatchewan, University Extension Press, University of Saskatchewan

  28. Iqbal J, Rayburn AL (1994) Stability of RAPD markers for determining cultivar specific DNA profiles in rye (Secale cereale L.). Euphytica 75:215–220

    Article  CAS  Google Scholar 

  29. Weining B, Langridge P (1991) Identification and mapping polymorphism in cereals based on PCR. Theor Appl Genet 82:209–216

    Article  CAS  Google Scholar 

  30. Nei N, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  31. Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  32. Franco J, Crossa J, Ribaut JM, Betran J, Warburton ML, Khairallah M (2001) A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theor Appl Genet 103:944–952

    Article  Google Scholar 

  33. Ali F, Bakht J, Khan S, Hussain T, Ali M, Khan W, Khan BM, Shah MM (2011) Polymerase chain reaction (PCR) based molecular characterization of popular wheat varieties of Khyber Pukhtunkhwa (KPK) region of Pakistan. Afr J Biotech 10(82):18958–18964

    CAS  Google Scholar 

  34. He S, Ohm H, Mackenzie S (1992) Detection of DNA sequence polymorphisms among wheat varieties. Theor Appl Genet 84:573–578

    Article  Google Scholar 

  35. Saffdar H (2007) Evaluation of elite II synthetic hexaploid wheat against Barley yellow dwarf virus and their molecular diversity. M.Sc (Hons) thesis, PMAS-Arid Agriculture University, Rawalpindi, Pakistan

  36. Saffdar H, Ashfaq M, Hameed S, Irfan ul Haque Kazi M (2009) Molecular analysis of genetic diversity in elite II synthetic hexaploid wheat screened against Barley yellow dwarf virus. Afr J Biotech 8(14):3244–3250

    CAS  Google Scholar 

  37. Mehboob-ur-Rehman Malik TA, Chowdhary MA, Iqbal MJ, Zafar Y (2004) Application of random amplified polymorphic DNA (RAPD) technique for the identification of markers linked to salinity tolerance in wheat (Triticum aestivum L). Pak J Bot 36(3):595–602

    Google Scholar 

  38. Malik TA (1995) Genetics and breeding for drought resistance in wheat: physio-molecular approaches. Ph.D. thesis, Univ. Wales, U.K

  39. Farrakh S, Ahmad IA, Mirza JI, Hameed S, Kazi M, Ashraf M (2011) RAPD analysis of stripe rust resistant synthetic hexaploid of wheat. Int J Appl Sci Tech. 1(3)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ilyas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakeel, M., Ilyas, M. & Kazi, M. Evaluation of synthetic hexaploid wheats (derivative of durum wheats and Aegilops tauschii accessions) for studying genetic diversity using randomly amplified polymorphic DNA (RAPD) markers. Mol Biol Rep 40, 21–26 (2013). https://doi.org/10.1007/s11033-012-1943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1943-y

Keywords

Navigation