Skip to main content

Advertisement

Log in

Chemotherapy sorting can be used to identify cancer stem cell populations

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cancer stem cells (CSCs) of bladder transitional cell cancers (BTCC) had not been identified by the reported common methods. According to the phenomenon that CSCs were resistant to chemotherapy, BTCC cell lines T24 and 5637 were cultured with mitomycin C respectively. Cell inhibition assay revealed an increased population of drug resistant cancer cells with a concentration gradient of mitomycin C. The maximal and minimal cell inhibition rate in cell line T24 was 92.5 % ± 1.0 versus 64.1 % ± 1.4 (P < 0.001), and in cell line 5637 was 90.2 % ± 2.5 versus 55.1 % ± 1.8 (P < 0.001), respectively. There is no significant difference between these two groups. Drug resistant cells just comprised approximately 7.5 % (T24) versus 9.8 % (5637) of the total cells. Compared with control cells, cell cycle analysis demonstrated that more drug resistant cells were at G0G1 phase and fewer were at S phase with the concentration gradient of mitomycin C in both cell lines, which is in accord with the stem cell theory that most stem cells maintain in a quiescent condition. Importantly, we found that embryonic stem cell markers (OCT-4 and NANOG) were highly expressed in both gene and protein level in BTCC cell line T24 and 5637 after 24-h chemotherapy exposure. Interestingly, the drug concentration gradient was in accord with OCT-4 and NANOG expression, suggesting that chemotherapy sorting might be a feasible method for BTCC CSCs identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  2. Heney NM (1992) Natural history of superficial bladder cancer. Prognostic features and long-term disease course. Urol Clin North Am 19:429–433

    PubMed  CAS  Google Scholar 

  3. Fiala S (1968) The cancer cell as a stem cell unable to differentiate. A theory of carcinogenesis. Neoplasma 15:607–622

    PubMed  CAS  Google Scholar 

  4. Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463

    Article  PubMed  CAS  Google Scholar 

  5. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  6. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  7. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  8. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  9. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  PubMed  CAS  Google Scholar 

  10. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  11. Bapat SA, Mali AM, Koppikar CB, Kurrey NK (2005) Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 65:3025–3029

    PubMed  CAS  Google Scholar 

  12. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037

    Article  PubMed  CAS  Google Scholar 

  13. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115

    Article  PubMed  CAS  Google Scholar 

  14. Wu C, Alman BA (2008) Side population cells in human cancers. Cancer Lett 268:1–9

    Article  PubMed  CAS  Google Scholar 

  15. Zhang M, Rosen JM (2006) Stem cells in the etiology and treatment of cancer. Curr Opin Genet Dev 16:60–64

    Article  PubMed  Google Scholar 

  16. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    Article  PubMed  CAS  Google Scholar 

  17. Ning ZF, Huang YJ, Lin TX, Zhou YX, Jiang C, Xu KW, Huang H, Yin XB, Huang J (2009) Subpopulations of stem-like cells in side population cells from the human bladder transitional cell cancer cell line T24. J Int Med Res 37:621–630

    PubMed  CAS  Google Scholar 

  18. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10:R25

    Article  PubMed  Google Scholar 

  19. Soltysova A, Altanerova V, Altaner C (2005) Cancer stem cells. Neoplasma 52:435–440

    PubMed  CAS  Google Scholar 

  20. Nakagawara A, Ohira M (2004) Comprehensive genomics linking between neural development and cancer: neuroblastoma as a model. Cancer Lett 204:213–224

    Article  PubMed  CAS  Google Scholar 

  21. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679

    Article  PubMed  CAS  Google Scholar 

  22. Tan S, Chen JS, Sun LJ, Yao HR (2009) Selective enrichment of hepatocellular cancer stem cells by chemotherapy. J Int Med Res 37:1046–1056

    PubMed  CAS  Google Scholar 

  23. Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rigby PW, Staudt LM (1990) A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 345:686–692

    Article  PubMed  CAS  Google Scholar 

  24. Scholer HR, Ruppert S, Suzuki N, Chowdhury K, Gruss P (1990) New type of POU domain in germ line-specific protein Oct-4. Nature 344:435–439

    Article  PubMed  CAS  Google Scholar 

  25. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    Article  PubMed  CAS  Google Scholar 

  26. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    Article  PubMed  CAS  Google Scholar 

  27. Gidekel S, Pizov G, Bergman Y, Pikarsky E (2003) Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell 4:361–370

    Article  PubMed  CAS  Google Scholar 

  28. Hochedlinger K, Yamada Y, Beard C, Jaenisch R (2005) Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell 121:465–477

    Article  PubMed  CAS  Google Scholar 

  29. Tai MH, Chang CC, Kiupel M, Webster JD, Olson LK, Trosko JE (2005) Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis 26:495–502

    Article  PubMed  CAS  Google Scholar 

  30. Liu TM, Wu YN, Guo XM, Hui JH, Lee EH, Lim B (2009) Effects of ectopic Nanog and Oct4 overexpression on mesenchymal stem cells. Stem Cells Dev 18:1013–1022

    Article  PubMed  CAS  Google Scholar 

  31. Zhang J, Wang X, Chen B, Suo G, Zhao Y, Duan Z, Dai J (2005) Expression of Nanog gene promotes NIH3T3 cell proliferation. Biochem Biophys Res Commun 338:1098–1102

    Article  PubMed  CAS  Google Scholar 

  32. Zhang HY, Sun H (2010) Up-regulation of Foxp3 inhibits cell proliferation, migration and invasion in epithelial ovarian cancer. Cancer Lett 287:91–97

    Article  PubMed  CAS  Google Scholar 

  33. Yang YM, Chang JW (2008) Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Invest 26:725–733

    Article  PubMed  CAS  Google Scholar 

  34. Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3:895–902

    Article  PubMed  CAS  Google Scholar 

  35. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    Article  PubMed  CAS  Google Scholar 

  36. Sharabiani MT, Siermala M, Lehtinen TO, Vihinen M (2005) Dynamic covariation between gene expression and proteome characteristics. BMC Bioinformatics 6:215

    Article  PubMed  Google Scholar 

  37. Yang YM, Chang JW (2008) Bladder cancer initiating cells (BCICs) are among EMA-CD44v6+ subset: novel methods for isolating undetermined cancer stem (initiating) cells. Cancer Invest 26:725–733

    Article  PubMed  CAS  Google Scholar 

  38. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    Article  PubMed  CAS  Google Scholar 

  39. Ratajczak MZ (2005) Cancer stem cells–normal stem cells “Jedi” that went over to the “dark side”. Folia Histochem Cytobiol 43:175–181

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Shanghai Baoshan District Scientific and Technological Commission of China (Grant No. 10-E-7).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Wang.

Additional information

Liping Li and Bingkun Li contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Li, B., Shao, J. et al. Chemotherapy sorting can be used to identify cancer stem cell populations. Mol Biol Rep 39, 9955–9963 (2012). https://doi.org/10.1007/s11033-012-1864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1864-9

Keywords

Navigation