Skip to main content

Advertisement

Log in

Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among north Indian population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hypermethylation of CpG islands leads to transcriptional silencing and it is the predominant mechanism of tumor suppressor gene inactivation in many tumors. Methylation-specific polymerase chain reaction was performed to analyse the methylation status of the promoter region of the tumor suppressor genes. Hypermethylation of the 5′ CpG island of the p21 CIP1, p27 KIP1, p57 KIP2, p53, p73 and RB 1 gene promoter were found in 8.8, 8.8, 11.2, 12, 25.6 and 4.8 % of 125 cervical cancer samples from north Indian population, respectively. Methylation of p73 was significantly (P < 0.001) associated with the cervical cancer cases in comparison to controls. Significant correlation was also observed between the methylation of p73 gene and increase in the risk of cervical cancer among passive smokers. Promoter hypermethylation of p53 gene was also observed to be significant among oral contraceptive users and cervical cancer patients having age at first sexual intercourse <20 years whereas hypermethylation of other genes was not found to be significant in the present study. This is the first report showing significant hypermethylation of p73 and p53 genes among cervical cancer patients in north Indian population. This is also the first report on significant p53 hypermethylation in cervical cancer in any population. Our findings did not show any correlation between promoter methylation of p73 and the other genes under study with clinicopathological parameters, including human papillomavirus infection and stage of the disease. The frequency of aberrant methylation of p73 and p53 gene promoter was unchanged according to the age of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Globocan (2008) http://www.dep.iarc.fr/globocan/database.htm. Accessed 13 Nov 2010

  2. Burd EM (2003) Human papillomavirus and cervical cancer. Clin Microbiol Rev 16:1–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1:222–231

    Article  CAS  PubMed  Google Scholar 

  4. Hunter T (1993) Braking the cell cycle. Cell 75:839–841

    Article  CAS  PubMed  Google Scholar 

  5. Hirama T, Koeffer HP (1995) Role of the cyclin dependent kinase inhibitors in the development of cancer. Blood 86:841–854

    CAS  PubMed  Google Scholar 

  6. El-Deiry WS, Harper JW, O’Connor PM, Velculescu VE, Canman CE, Jackman J, Pietenpol JA, Burrell M, Hill DE, Wang Y (1994) WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res 54:1169–1174

    CAS  PubMed  Google Scholar 

  7. Chen YQ, Cipriano SC, Arenkiel JM, Miller FR (1995) Tumor suppression by p21 WAF1. Cancer Res 55:4536–4539

    CAS  PubMed  Google Scholar 

  8. Bae I, Fan S, Bhatia K, Kohn KW, Fornace AJ, O’Connor PM (1995) Relationships between G1 arrest and stability of the p53 and p21CIP1/WAF1 proteins following g-irradiation of human lymphoma cells. Cancer Res 55:2387–2393

    CAS  PubMed  Google Scholar 

  9. Nanjokat C, Sezer O, Zinkett H, Lechere A, Hauptmann S, Possinger K (2000) Proteasome inhibitors induced caspase-dependent apoptosis and accumulation of p21 WAF1/CIP1 in human immature leukemic cells. Eur J Haematol 65:221–236

    Article  Google Scholar 

  10. Stein JP, Ginsberg DA, Grossfeld GD, Chatterjee SJ, Esrig D, Dickinson MG, Groshen S, Taylor CR, Jones PA, Skinner DG, Cote RJ (1998) Effect of p21 WAF1/CIP1 expression on tumor progression in bladder cancer. J Natl Cancer Inst 90:1072–1079

    Article  CAS  PubMed  Google Scholar 

  11. Pinyol M, Hernandez L, Cazorla M, Balbín M, Jares P, Fernandez PL, Montserrat E, Cardesa A, Lopez-Otín C, Campo E (1997) Deletions and loss of expression of p16 INK4a and p21 WAF1 genes are associated with aggressive variants of mantle cell lymphomas. Blood 89:272–278

    CAS  PubMed  Google Scholar 

  12. Gartel AL, Tyner AL (1999) Transcriptional regulation of the p21 WAF1/CIP1 gene. Exp Cell Res 246:280–289

    Article  CAS  PubMed  Google Scholar 

  13. Shiohara M, el-Deiry WS, Wada M, Nakamaki T, Takeuchi S, Yang R, Chen DL, Vogelstein B, Koeffler HP (1994) Absence of WAF1 mutations in a variety of human malignancies. Blood 84:3781–3784

    CAS  PubMed  Google Scholar 

  14. Ying J, Srivastava G, Gao Z, Zhang X, Murray P, Ambinder R, Tao Q (2004) Promoter hypermethylation of the cyclin-dependent kinase inhibitor (CDKI) gene p21 WAF1/CIP1/SDI1 is rare in various lymphomas and carcinomas. Blood 103:743–746

    Article  CAS  PubMed  Google Scholar 

  15. Worm J, Bartkova J, Kirkin AF, Straten P, Zeuthen J, Bartek J (2000) Aberrant p27 KIP1 promoter methylation in malignant melanoma. Oncogene 9:5111–5115

    Article  Google Scholar 

  16. Kondo M, Matsuoka S, Uchida K, Osada H, Nagatake M, Takagi K, Harper JW, Takahashi T, Elledge SJ (1996) Selective maternal-allele loss in human lung cancers of the maternally expressed p57 KIP2 gene at 11p15.5. Oncogene 12:1365–1368

    CAS  PubMed  Google Scholar 

  17. Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878

    CAS  PubMed  Google Scholar 

  18. Hussain SP, Hofseth LJ, Harris CC (2001) Tumor suppressor genes: at the crossroads of molecular carcinogenesis, molecular epidemiology and human risk assessment. Lung Cancer 34(Suppl 2):S7–S15

    Article  PubMed  Google Scholar 

  19. Cho Y, Gorina S, Jeffrey PD, Pavletich NP (1994) Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355

    Article  CAS  PubMed  Google Scholar 

  20. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819

    Article  CAS  PubMed  Google Scholar 

  21. Zhu J, Jiang J, Zhou W, Chen X (1998) The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res 58:5061–5065

    CAS  PubMed  Google Scholar 

  22. Melino G, Laurenzi VD, Vousden KH (2002) p73: friend or foe in tumorigenesis. Nat Rev Cancer 2:605–615

    Article  CAS  PubMed  Google Scholar 

  23. Knudson AG (1978) Retinoblastoma: a prototypic hereditary neoplasm. Semin Oncol 5:57–60

    PubMed  Google Scholar 

  24. Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646

    Article  CAS  PubMed  Google Scholar 

  25. Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  CAS  PubMed  Google Scholar 

  26. González AD, Lizano M, Candelaria M, Cetina L, Arce C, Cervera E (2005) Epigenetics of cervical cancer. An overview and therapeutic perspective. Mol Cancer 4:38

    Article  Google Scholar 

  27. Virmani AK, Muller C, Rathi A, Zoechbauer-Mueller S, Mathis M, Gazdar AF (2001) Aberrant methylation during cervical carcinogenesis. Clin Cancer Res 7:584–589

    CAS  PubMed  Google Scholar 

  28. Esteller M, Corn PG, Baylin SB, Herman JG (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229

    CAS  PubMed  Google Scholar 

  29. Kang S, Bader AG, Vogt PK (2005) Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc Natl Acad Sci USA 102(3):802–807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoque MO, Begum S, Topaloglu O, Jeronimo C, Mambo E, Westra WH, Califano JA, Sidransky D (2004) Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res 64:5511–5517

    Article  CAS  PubMed  Google Scholar 

  31. D’Costa J, Saranath D, Dedhia P, Sanghvi V, Mehta RA (1998) Detection of HPV-16 genome in human oral cancers and potentially malignant lesions from India. Oral Oncol 34:413–420

    Article  PubMed  Google Scholar 

  32. Park JS, Dong SM, Kim HS, Lee JY, Jong US, Park IS, Kim SJ, Namkoong SE (1999) Detection of p16 gene alteration in cervical cancer using tissue microdissection and LOH study. Cancer Lett 136:101–108

    Article  CAS  PubMed  Google Scholar 

  33. Herman JG, Jen J, Merlo A, Baylin SB (1996) Hypermethylation associated inactivation indicates a tumor suppressor role for p15INK4b. Cancer Res 56:722–727

    CAS  PubMed  Google Scholar 

  34. Go JH (2003) Methylation analysis of cyclin-dependent kinase inhibitor genes in primary gastrointestinal lymphomas. Mod Pathol 16:752–755

    Article  PubMed  Google Scholar 

  35. Chim CS, Fung TK, Wong KF, Lau JS, Law M, Liang R (2006) Methylation of INK4 and CIP/KIP families of cyclin-dependent kinase inhibitor in chronic lymphocytic leukaemia in Chinese patients. J Clin Pathol 59(9):921–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chim CS, Liang R, Fung TK, Kwong YL (2005) Infrequent epigenetic dysregulation of CIP/KIP family of cyclin-dependent kinase inhibitors in multiple myeloma. Leukemia 19:2352–2355

    Article  CAS  PubMed  Google Scholar 

  37. Yeh KT, Chang GA, Lin TH, Wang YF, Tien N, Chang JY, Chen CJ, Shih MC (2003) Epigenetics changes of tumor suppressor genes, p15, p16, VHIL and p53 in oral cancer. Oncol Rep 10:659–663

    CAS  PubMed  Google Scholar 

  38. Siu LL, Chan JK, Wong KF, Kwong YL (2002) Specific patterns of gene methylation in natural killer cell lymphomas: p73 is consistently involved. Am J Pathol 160:59–66

    Article  CAS  PubMed  Google Scholar 

  39. Dong SM, Lee EJ, Jeon SE, Park CK, Kim KM (2005) Progressive methylation during the serrated neoplasia pathway of the colorectum. Mod Pathol 18:170–178

    Article  CAS  PubMed  Google Scholar 

  40. Jha AK, Kumar S, Nikbakht M, Sharma V, Kaur J (2011) Epigenetics and its role in ageing and cancer. J Med Med Sci 2(3):696–713

    Google Scholar 

  41. Jha AK, Nikbakht M, Capalash N, Kaur J (2010) DNA methylation inhibitors: role in cancer therapy. SAJOSPS 11(1):131

    Google Scholar 

  42. Jha AK, Nikbakht M, Parashar G, Shrivastava A, Capalash N, Kaur J (2010) Reversal of hypermethylation and reactivation of the RARβ2 gene by natural compounds in cervical cancer lines. Folia Biol (Praha) 56:195–200

    CAS  Google Scholar 

  43. Roman-Gomez J, Castillejo JA, Jimenez A, Gonzalez MG, Moreno F, Rodriguez Mdel C, Barrios M, Maldonado J, Torres A (2002) 5′ CpG island hypermethylation is associated with transcriptional silencing of the p21 CIP1/WAF1/SDI1 gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 99:2291–2296

    Article  CAS  PubMed  Google Scholar 

  44. Shen L, Kondo Y, Issa JP, Garcia-Manero G (2002) Lack of p21 CIP1 DNA methylation in acute lymphocytic leukemia. Blood 100:3432–3433

    Article  CAS  PubMed  Google Scholar 

  45. Hui AM, Sun L, Kanai Y, Sakamoto M, Hirohashi S (1998) Reduced p27KIP1 expression in hepatocellular carcinomas. Cancer Lett 132:67–73

    Article  CAS  PubMed  Google Scholar 

  46. Ito C, Kumagai M, Manabe A et al (1999) Hyperdiploid acute lymphoblastic leukemia with 51 to 65 chromosomes: a distinct biological entity with a marked propensity to undergo apoptosis. Blood 93:315

    CAS  PubMed  Google Scholar 

  47. Chen TC, Ng KF, Lien JM, Jeng LB, Chen MF, Hsieh LL (2000) Mutational analysis of the p27 KIP1 gene in the hepatocellular carcinoma. Cancer Lett 153:169–173

    Article  CAS  PubMed  Google Scholar 

  48. Ishida E, Nakamura M, Ikuta M, Shimada K, Matsuyoshi S, Kirita T, Konishi N (2005) Promoter hypermethylation of p14 ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol 41:614–622

    Article  CAS  PubMed  Google Scholar 

  49. Takashi O, Takao W, Yoichi K, Atsuo Y, Kazunari Y, Akiyoshi O, Chiaki K, Takao K (2006) Aberrant promoter hypermethylation profile of cell cycle regulatory genes in malignant astrocytomas. Oncol Rep 16:957–963

    Google Scholar 

  50. Qian X, Jin L, Kulig E, Lloyd RV (1998) DNA methylation regulates p27 KIP1 expression in rodent pituitary cell lines. Am J Pathol 153:1475–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nakamura M, Sakaki T, Hashimoto H, Nakase H, Ishida E, Shimada K (2001) Frequent alterations of the p14 ARF and p16 INK4a genes in primary central nervous system lymphomas. Cancer Res 61:6335–6339

    CAS  PubMed  Google Scholar 

  52. Moreira PR (2009) Methylation of p16, p21, p27, RB1 and p53 genes in odontogenic keratocysts. J Oral Pathol Med 38(1):99–103

    Article  CAS  PubMed  Google Scholar 

  53. Kibel AS, Christopher M, Faith DA, Bova GS, Goodfellow PJ, Isaacs WB (2001) Methylation and mutational analysis of p27 KIP1 in prostate carcinoma. Prostate 48:248–253

    Article  CAS  PubMed  Google Scholar 

  54. Nakatsuka S, Liu A, Yao M, Takakuwa T, Tomita Y, Hoshida Y, Nishiu M, Aozasa K (2003) Methylation of promoter region in p27 gene plays a role in the development of lymphoid malignancies. Int J Oncol 22:561–568

    CAS  PubMed  Google Scholar 

  55. Min KO, Seo EJ, Kwon HJ, Lee EJ, Kim WI, Kang CS, Kim KM (2006) Methylation of p16INK4A and p57KIP2 are involved in the development and progression of gastric MALT lymphomas. Mod Pathol 19:141–148

    Article  CAS  PubMed  Google Scholar 

  56. Kang HJ, Kim SJ, Noh DY, Park IA, Choe KJ, Yoo OJ, Kang HS (2001) Methylation in the p53 promoter is a supplementary route to breast carcinogenesis: correlation between CpG methylation in the p53 promoter and the mutation of the p53 gene in the progression from ductal carcinoma in situ to invasive ductal carcinoma. Lab Investig 81:573–579

    Article  CAS  PubMed  Google Scholar 

  57. Corn PG, Kuerbitz SJ, van Noesel MM, Esteller M, Compitello N, Baylin SB, Herman JG (1999) Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5′ CpG island methylation. Cancer Res 59:3352–3356

    CAS  PubMed  Google Scholar 

  58. Zheng S, Ma X, Zhang L, Gunn L, Smith MT, Wiemels JL, Leung K, Buffler PA, Wiencke JK (2004) Hypermethylation of the 5′ CpG island of the FHIT gene is associated with hyperdiploid and translocation-negative subtypes of pediatric leukemia. Cancer Res 64:2000–2006

    Article  CAS  PubMed  Google Scholar 

  59. Watanabe T, Katayama Y, Yoshino A, Komine C, Yokoyama T (2003) Deregulation of the TP53/p14 ARF tumor suppressor pathway in lowgrade diffuse astrocytomas and its influence on clinical course. Clin Cancer Res 9:4884–4890

    CAS  PubMed  Google Scholar 

  60. Liu SS, Leung RC, Chan KY, Chiu PM, Cheung AN, Tam KF, Ng TY, Wong LC, Ngan HY (2004) p73 Expression is associated with the cellular radiosensitivity in cervical cancer after radiotherapy. Clin Cancer Res 10:3309–3316

    Article  CAS  PubMed  Google Scholar 

  61. Malekzadeh K, Sobti RC, Nikbakht M, Shekari M, Hosseini SA, Tamandani DK, Singh SK (2009) Methylation patterns of Rb1 and Casp-8 promoters and their impact on their expression in bladder cancer. Cancer Investig 27(1):70–80

    Article  CAS  Google Scholar 

  62. Narayan G, Arias-Pulido H, Koul S, Vargas H, Zhang FF, Villella J, Schneider A, Terry MB, Mansukhani M, Murty VV (2003) Frequent promoter methylation of CDH1, DAPK, RARB, and HIC1 genes in carcinoma of cervix uteri: its relationship to clinical outcome. Mol Cancer 2:24

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial assistance provided by CSIR (Council of Scientific and Industrial Research), India to AKJ.

Conflict of interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdeep Kaur.

Additional information

Neena Capalash and Jagdeep Kaur contributed equally for this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, A.K., Nikbakht, M., Jain, V. et al. Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among north Indian population. Mol Biol Rep 39, 9145–9157 (2012). https://doi.org/10.1007/s11033-012-1787-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1787-5

Keywords

Navigation